Search (7 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Gonçalves, M.A."
  1. Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: ¬A survey on tag recommendation methods : a review (2017) 0.03
    0.026219916 = product of:
      0.05243983 = sum of:
        0.03657866 = weight(_text_:data in 3524) [ClassicSimilarity], result of:
          0.03657866 = score(doc=3524,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 3524, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3524)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 3524) [ClassicSimilarity], result of:
              0.03172234 = score(doc=3524,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 3524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3524)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Tags (keywords freely assigned by users to describe web content) have become highly popular on Web 2.0 applications, because of the strong stimuli and easiness for users to create and describe their own content. This increase in tag popularity has led to a vast literature on tag recommendation methods. These methods aim at assisting users in the tagging process, possibly increasing the quality of the generated tags and, consequently, improving the quality of the information retrieval (IR) services that rely on tags as data sources. Regardless of the numerous and diversified previous studies on tag recommendation, to our knowledge, no previous work has summarized and organized them into a single survey article. In this article, we propose a taxonomy for tag recommendation methods, classifying them according to the target of the recommendations, their objectives, exploited data sources, and underlying techniques. Moreover, we provide a critical overview of these methods, pointing out their advantages and disadvantages. Finally, we describe the main open challenges related to the field, such as tag ambiguity, cold start, and evaluation issues.
    Date
    16.11.2017 13:30:22
  2. Salles, T.; Rocha, L.; Gonçalves, M.A.; Almeida, J.M.; Mourão, F.; Meira Jr., W.; Viegas, F.: ¬A quantitative analysis of the temporal effects on automatic text classification (2016) 0.01
    0.014458986 = product of:
      0.057835944 = sum of:
        0.057835944 = weight(_text_:data in 3014) [ClassicSimilarity], result of:
          0.057835944 = score(doc=3014,freq=10.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.39059696 = fieldWeight in 3014, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3014)
      0.25 = coord(1/4)
    
    Abstract
    Automatic text classification (TC) continues to be a relevant research topic and several TC algorithms have been proposed. However, the majority of TC algorithms assume that the underlying data distribution does not change over time. In this work, we are concerned with the challenges imposed by the temporal dynamics observed in textual data sets. We provide evidence of the existence of temporal effects in three textual data sets, reflected by variations observed over time in the class distribution, in the pairwise class similarities, and in the relationships between terms and classes. We then quantify, using a series of full factorial design experiments, the impact of these effects on four well-known TC algorithms. We show that these temporal effects affect each analyzed data set differently and that they restrict the performance of each considered TC algorithm to different extents. The reported quantitative analyses, which are the original contributions of this article, provide valuable new insights to better understand the behavior of TC algorithms when faced with nonstatic (temporal) data distributions and highlight important requirements for the proposal of more accurate classification models.
  3. Ferreira, A.A.; Veloso, A.; Gonçalves, M.A.; Laender, A.H.F.: Self-training author name disambiguation for information scarce scenarios (2014) 0.01
    0.011199882 = product of:
      0.04479953 = sum of:
        0.04479953 = weight(_text_:data in 1292) [ClassicSimilarity], result of:
          0.04479953 = score(doc=1292,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.30255508 = fieldWeight in 1292, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1292)
      0.25 = coord(1/4)
    
    Abstract
    We present a novel 3-step self-training method for author name disambiguation-SAND (self-training associative name disambiguator)-which requires no manual labeling, no parameterization (in real-world scenarios) and is particularly suitable for the common situation in which only the most basic information about a citation record is available (i.e., author names, and work and venue titles). During the first step, real-world heuristics on coauthors are able to produce highly pure (although fragmented) clusters. The most representative of these clusters are then selected to serve as training data for the third supervised author assignment step. The third step exploits a state-of-the-art transductive disambiguation method capable of detecting unseen authors not included in any training example and incorporating reliable predictions to the training data. Experiments conducted with standard public collections, using the minimum set of attributes present in a citation, demonstrate that our proposed method outperforms all representative unsupervised author grouping disambiguation methods and is very competitive with fully supervised author assignment methods. Thus, different from other bootstrapping methods that explore privileged, hard to obtain information such as self-citations and personal information, our proposed method produces topnotch performance with no (manual) training data or parameterization and in the presence of scarce information.
  4. Melo, P.F.; Dalip, D.H.; Junior, M.M.; Gonçalves, M.A.; Benevenuto, F.: 10SENT : a stable sentiment analysis method based on the combination of off-the-shelf approaches (2019) 0.01
    0.011199882 = product of:
      0.04479953 = sum of:
        0.04479953 = weight(_text_:data in 4990) [ClassicSimilarity], result of:
          0.04479953 = score(doc=4990,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.30255508 = fieldWeight in 4990, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4990)
      0.25 = coord(1/4)
    
    Abstract
    Sentiment analysis has become a very important tool for analysis of social media data. There are several methods developed, covering distinct aspects of the problem and disparate strategies. However, no single technique fits well in all cases or for all data sources. Supervised approaches may be able to adapt to specific situations, but require manually labeled training, which is very cumbersome and expensive to acquire, mainly for a new application. In this context, we propose to combine several popular and effective state-of-the-practice sentiment analysis methods by means of an unsupervised bootstrapped strategy. One of our main goals is to reduce the large variability (low stability) of the unsupervised methods across different domains. The experimental results demonstrate that our combined method (aka, 10SENT) improves the effectiveness of the classification task, considering thirteen different data sets. Also, it tackles the key problem of cross-domain low stability and produces the best (or close to best) results in almost all considered contexts, without any additional costs (e.g., manual labeling). Finally, we also investigate a transfer learning approach for sentiment analysis to gather additional (unsupervised) information for the proposed approach, and we show the potential of this technique to improve our results.
  5. Pereira, D.A.; Ribeiro-Neto, B.; Ziviani, N.; Laender, A.H.F.; Gonçalves, M.A.: ¬A generic Web-based entity resolution framework (2011) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 4450) [ClassicSimilarity], result of:
          0.03657866 = score(doc=4450,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 4450, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4450)
      0.25 = coord(1/4)
    
    Abstract
    Web data repositories usually contain references to thousands of real-world entities from multiple sources. It is not uncommon that multiple entities share the same label (polysemes) and that distinct label variations are associated with the same entity (synonyms), which frequently leads to ambiguous interpretations. Further, spelling variants, acronyms, abbreviated forms, and misspellings compound to worsen the problem. Solving this problem requires identifying which labels correspond to the same real-world entity, a process known as entity resolution. One approach to solve the entity resolution problem is to associate an authority identifier and a list of variant forms with each entity-a data structure known as an authority file. In this work, we propose a generic framework for implementing a method for generating authority files. Our method uses information from the Web to improve the quality of the authority file and, because of that, is referred to as WER-Web-based Entity Resolution. Our contribution here is threefold: (a) we discuss how to implement the WER framework, which is flexible and easy to adapt to new domains; (b) we run extended experimentation with our WER framework to show that it outperforms selected baselines; and (c) we compare the results of a specialized solution for author name resolution with those produced by the generic WER framework, and show that the WER results remain competitive.
  6. Silva, R.M.; Gonçalves, M.A.; Veloso, A.: ¬A Two-stage active learning method for learning to rank (2014) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 1184) [ClassicSimilarity], result of:
          0.03657866 = score(doc=1184,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 1184, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1184)
      0.25 = coord(1/4)
    
    Abstract
    Learning to rank (L2R) algorithms use a labeled training set to generate a ranking model that can later be used to rank new query results. These training sets are costly and laborious to produce, requiring human annotators to assess the relevance or order of the documents in relation to a query. Active learning algorithms are able to reduce the labeling effort by selectively sampling an unlabeled set and choosing data instances that maximize a learning function's effectiveness. In this article, we propose a novel two-stage active learning method for L2R that combines and exploits interesting properties of its constituent parts, thus being effective and practical. In the first stage, an association rule active sampling algorithm is used to select a very small but effective initial training set. In the second stage, a query-by-committee strategy trained with the first-stage set is used to iteratively select more examples until a preset labeling budget is met or a target effectiveness is achieved. We test our method with various LETOR benchmarking data sets and compare it with several baselines to show that it achieves good results using only a small portion of the original training sets.
  7. Dalip, D.H.; Gonçalves, M.A.; Cristo, M.; Calado, P.: ¬A general multiview framework for assessing the quality of collaboratively created content on web 2.0 (2017) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 3343) [ClassicSimilarity], result of:
              0.03172234 = score(doc=3343,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 3343, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3343)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    16.11.2017 13:04:22