Search (6 results, page 1 of 1)

  • × author_ss:"Ingwersen, P."
  1. Ingwersen, P.; Wormell, I.: Modern indexing and retrieval techniques matching different types of information needs (1989) 0.02
    0.021526773 = product of:
      0.043053545 = sum of:
        0.043053545 = product of:
          0.08610709 = sum of:
            0.08610709 = weight(_text_:22 in 7322) [ClassicSimilarity], result of:
              0.08610709 = score(doc=7322,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.5416616 = fieldWeight in 7322, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7322)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    International forum on information and documentation. 14(1989), S.17-22
  2. Christensen, F.H.; Ingwersen, P.: Online citation analysis : a methodological approach (1996) 0.02
    0.0152030075 = product of:
      0.030406015 = sum of:
        0.030406015 = product of:
          0.06081203 = sum of:
            0.06081203 = weight(_text_:bibliographic in 6691) [ClassicSimilarity], result of:
              0.06081203 = score(doc=6691,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.34409973 = fieldWeight in 6691, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6691)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Investigates the possibilities and limitations of online citation analysis. The Dialog online processing tools RANK, MAP and TARGET are used to perform analysis of citations to and from isolated sets of documents as well as to carry out diachrone journal analysis. Discusses the implications of this analysis on the journal impact factors of ISI journals. Suggests that by the combined application of RANK and TARGET, a hitherto overlooked possibility of the online analysis of bibliographic coupling and mapping of scientific fields has been revealed
  3. Jepsen, E.T.; Seiden, P.; Ingwersen, P.; Björneborn, L.; Borlund, P.: Characteristics of scientific Web publications : preliminary data gathering and analysis (2004) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 3091) [ClassicSimilarity], result of:
              0.03800752 = score(doc=3091,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 3091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Because of the increasing presence of scientific publications an the Web, combined with the existing difficulties in easily verifying and retrieving these publications, research an techniques and methods for retrieval of scientific Web publications is called for. In this article, we report an the initial steps taken toward the construction of a test collection of scientific Web publications within the subject domain of plant biology. The steps reported are those of data gathering and data analysis aiming at identifying characteristics of scientific Web publications. The data used in this article were generated based an specifically selected domain topics that are searched for in three publicly accessible search engines (Google, AlITheWeb, and AItaVista). A sample of the retrieved hits was analyzed with regard to how various publication attributes correlated with the scientific quality of the content and whether this information could be employed to harvest, filter, and rank Web publications. The attributes analyzed were inlinks, outlinks, bibliographic references, file format, language, search engine overlap, structural position (according to site structure), and the occurrence of various types of metadata. As could be expected, the ranked output differs between the three search engines. Apparently, this is caused by differences in ranking algorithms rather than the databases themselves. In fact, because scientific Web content in this subject domain receives few inlinks, both AItaVista and AlITheWeb retrieved a higher degree of accessible scientific content than Google. Because of the search engine cutoffs of accessible URLs, the feasibility of using search engine output for Web content analysis is also discussed.
  4. Järvelin, K.; Ingwersen, P.; Niemi, T.: ¬A user-oriented interface for generalised informetric analysis based on applying advanced data modelling techniques (2000) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 4545) [ClassicSimilarity], result of:
              0.03800752 = score(doc=4545,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 4545, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4545)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article presents a novel user-oriented interface for generalised informetric analysis and demonstrates how informetric calculations can easily and declaratively be specified through advanced data modelling techniques. The interface is declarative and at a high level. Therefore it is easy to use, flexible and extensible. It enables end users to perform basic informetric ad hoc calculations easily and often with much less effort than in contemporary online retrieval systems. It also provides several fruitful generalisations of typical informetric measurements like impact factors. These are based on substituting traditional foci of analysis, for instance journals, by other object types, such as authors, organisations or countries. In the interface, bibliographic data are modelled as complex objects (non-first normal form relations) and terminological and citation networks involving transitive relationships are modelled as binary relations for deductive processing. The interface is flexible, because it makes it easy to switch focus between various object types for informetric calculations, e.g. from authors to institutions. Moreover, it is demonstrated that all informetric data can easily be broken down by criteria that foster advanced analysis, e.g. by years or content-bearing attributes. Such modelling allows flexible data aggregation along many dimensions. These salient features emerge from the query interface's general data restructuring and aggregation capabilities combined with transitive processing capabilities. The features are illustrated by means of sample queries and results in the article.
  5. Skov, M.; Larsen, B.; Ingwersen, P.: Inter and intra-document contexts applied in polyrepresentation for best match IR (2008) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 2117) [ClassicSimilarity], result of:
              0.03800752 = score(doc=2117,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 2117, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2117)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The principle of polyrepresentation offers a theoretical framework for handling multiple contexts in information retrieval (IR). This paper presents an empirical laboratory study of polyrepresentation in restricted mode of the information space with focus on inter and intra-document features. The Cystic Fibrosis test collection indexed in the best match system InQuery constitutes the experimental setting. Overlaps between five functionally and/or cognitively different document representations are identified. Supporting the principle of polyrepresentation, results show that in general overlaps generated by three or four representations of different nature have higher precision than those generated from two representations or the single fields. This result pertains to both structured and unstructured query mode in best match retrieval, however, with the latter query mode demonstrating higher performance. The retrieval overlaps containing search keys from the bibliographic references provide the best retrieval performance and minor MeSH terms the worst. It is concluded that a highly structured query language is necessary when implementing the principle of polyrepresentation in a best match IR system because the principle is inherently Boolean. Finally a re-ranking test shows promising results when search results are re-ranked according to precision obtained in the overlaps whilst re-ranking by citations seems less useful when integrated into polyrepresentative applications.
  6. Larsen, B.; Ingwersen, P.; Lund, B.: Data fusion according to the principle of polyrepresentation (2009) 0.01
    0.0061505064 = product of:
      0.012301013 = sum of:
        0.012301013 = product of:
          0.024602026 = sum of:
            0.024602026 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
              0.024602026 = score(doc=2752,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.15476047 = fieldWeight in 2752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2752)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 18:48:28