Search (52 results, page 1 of 3)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.04
    0.04125603 = product of:
      0.08251206 = sum of:
        0.08251206 = sum of:
          0.04560902 = weight(_text_:bibliographic in 780) [ClassicSimilarity], result of:
            0.04560902 = score(doc=780,freq=2.0), product of:
              0.17672792 = queryWeight, product of:
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.045395818 = queryNorm
              0.2580748 = fieldWeight in 780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
          0.03690304 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
            0.03690304 = score(doc=780,freq=2.0), product of:
              0.15896842 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045395818 = queryNorm
              0.23214069 = fieldWeight in 780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
      0.5 = coord(1/2)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
  2. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.04
    0.04125603 = product of:
      0.08251206 = sum of:
        0.08251206 = sum of:
          0.04560902 = weight(_text_:bibliographic in 1425) [ClassicSimilarity], result of:
            0.04560902 = score(doc=1425,freq=2.0), product of:
              0.17672792 = queryWeight, product of:
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.045395818 = queryNorm
              0.2580748 = fieldWeight in 1425, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.046875 = fieldNorm(doc=1425)
          0.03690304 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
            0.03690304 = score(doc=1425,freq=2.0), product of:
              0.15896842 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045395818 = queryNorm
              0.23214069 = fieldWeight in 1425, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1425)
      0.5 = coord(1/2)
    
    Abstract
    This paper returns to Beghtol's (1986) insightful typology of warrant to consider an empirical example of a traditional top-down hierarchical classification system as it continues to evolve in the early 21st century. Our examination considers there may be multiple warrants identified among the processes of design and the relationships to users of the National Occupational Classification (NOC), the standard occupational classification system published in Canada. We argue that this shift in semantic warrant signals a transition for traditional knowledge organization systems, and that warrant continues to be a relevant analytical concept and organizing principle, both within and beyond the domain of bibliographic control.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Vukadin, A.; Slavic, A.: Challenges of facet analysis and concept placement in Universal Classifications : the example of architecture in UDC (2014) 0.04
    0.04125603 = product of:
      0.08251206 = sum of:
        0.08251206 = sum of:
          0.04560902 = weight(_text_:bibliographic in 1428) [ClassicSimilarity], result of:
            0.04560902 = score(doc=1428,freq=2.0), product of:
              0.17672792 = queryWeight, product of:
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.045395818 = queryNorm
              0.2580748 = fieldWeight in 1428, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.046875 = fieldNorm(doc=1428)
          0.03690304 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
            0.03690304 = score(doc=1428,freq=2.0), product of:
              0.15896842 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045395818 = queryNorm
              0.23214069 = fieldWeight in 1428, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1428)
      0.5 = coord(1/2)
    
    Abstract
    The paper discusses the challenges of faceted vocabulary organization in universal classifications which treat the universe of knowledge as a coherent whole and in which the concepts and subjects in different disciplines are shared, related and combined. The authors illustrate the challenges of the facet analytical approach using, as an example, the revision of class 72 in UDC. The paper reports on the research undertaken in 2013 as preparation for the revision. This consisted of analysis of concept organization in the UDC schedules in comparison with the Art & Architecture Thesaurus and class W of the Bliss Bibliographic Classification. The paper illustrates how such research can contribute to a better understanding of the field and may lead to improvements in the facet structure of this segment of the UDC vocabulary.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Mills, J.; Broughton, V.: Bliss Bibliographic Classification : Introduction and auxiliary schedules (1992) 0.04
    0.040223375 = product of:
      0.08044675 = sum of:
        0.08044675 = product of:
          0.1608935 = sum of:
            0.1608935 = weight(_text_:bibliographic in 821) [ClassicSimilarity], result of:
              0.1608935 = score(doc=821,freq=14.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.9104023 = fieldWeight in 821, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0625 = fieldNorm(doc=821)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    LCSH
    Classification, Bibliographic
    Bliss Bibliographic classification
    PRECIS
    Documents / Subject classification schemes: Bliss, Henry Evelyn / Bliss bibliographic classification / Texts
    Subject
    Classification, Bibliographic
    Bliss Bibliographic classification
    Documents / Subject classification schemes: Bliss, Henry Evelyn / Bliss bibliographic classification / Texts
  5. Ullah, A.; Khusro, S.; Ullah, I.: Bibliographic classification in the digital age : current trends & future directions (2017) 0.03
    0.02974559 = product of:
      0.05949118 = sum of:
        0.05949118 = product of:
          0.11898236 = sum of:
            0.11898236 = weight(_text_:bibliographic in 5717) [ClassicSimilarity], result of:
              0.11898236 = score(doc=5717,freq=10.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.6732516 = fieldWeight in 5717, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5717)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Bibliographic classification is among the core activities of Library & Information Science that brings order and proper management to the holdings of a library. Compared to printed media, digital collections present numerous challenges regarding their preservation, curation, organization and resource discovery & access. Therefore, true native perspective is needed to be adopted for bibliographic classification in digital environments. In this research article, we have investigated and reported different approaches to bibliographic classification of digital collections. The article also contributes two evaluation frameworks that evaluate the existing classification schemes and systems. The article presents a bird's-eye view for researchers in reaching a generalized and holistic approach towards bibliographic classification research, where new research avenues have been identified.
  6. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.03
    0.02750402 = product of:
      0.05500804 = sum of:
        0.05500804 = sum of:
          0.030406015 = weight(_text_:bibliographic in 2763) [ClassicSimilarity], result of:
            0.030406015 = score(doc=2763,freq=2.0), product of:
              0.17672792 = queryWeight, product of:
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.045395818 = queryNorm
              0.17204987 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.893044 = idf(docFreq=2449, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
          0.024602026 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.024602026 = score(doc=2763,freq=2.0), product of:
              0.15896842 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045395818 = queryNorm
              0.15476047 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
      0.5 = coord(1/2)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
  7. Bliss, H.E.: ¬A bibliographic classification : principles and definitions (1985) 0.02
    0.024038067 = product of:
      0.048076134 = sum of:
        0.048076134 = product of:
          0.09615227 = sum of:
            0.09615227 = weight(_text_:bibliographic in 3621) [ClassicSimilarity], result of:
              0.09615227 = score(doc=3621,freq=20.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.54406947 = fieldWeight in 3621, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Henry Evelyn Bliss (1870-1955) devoted several decades of his life to the study of classification and the development of the Bibliographic Classification scheme while serving as a librarian in the College of the City of New York. In the course of the development of the Bibliographic Classification, Bliss developed a body of classification theory published in a number of articles and books, among which the best known are The Organization of Knowledge and the System of the Sciences (1929), Organization of Knowledge in Libraries and the Subject Approach to Books (1933; 2nd ed., 1939), and the lengthy preface to A Bibliographic Classification (Volumes 1-2, 1940; 2nd ed., 1952). In developing the Bibliographic Classification, Bliss carefully established its philosophical and theoretical basis, more so than was attempted by the makers of other classification schemes, with the possible exception of S. R. Ranganathan (q.v.) and his Colon Classification. The basic principles established by Bliss for the Bibliographic Classification are: consensus, collocation of related subjects, subordination of special to general and gradation in specialty, and the relativity of classes and of classification (hence alternative location and alternative treatment). In the preface to the schedules of A Bibliographic Classification, Bliss spells out the general principles of classification as weIl as principles specifically related to his scheme. The first volume of the schedules appeared in 1940. In 1952, he issued a second edition of the volume with a rewritten preface, from which the following excerpt is taken, and with the addition of a "Concise Synopsis," which is also included here to illustrate the principles of classificatory structure. In the excerpt reprinted below, Bliss discusses the correlation between classes, concepts, and terms, as weIl as the hierarchical structure basic to his classification scheme. In his discussion of cross-classification, Bliss recognizes the "polydimensional" nature of classification and the difficulties inherent in the two-dimensional approach which is characteristic of linear classification. This is one of the earliest works in which the multidimensional nature of classification is recognized. The Bibliographic Classification did not meet with great success in the United States because the Dewey Decimal Classification and the Library of Congress Classification were already weIl ensconced in American libraries by then. Nonetheless, it attracted considerable attention in the British Commonwealth and elsewhere in the world. A committee was formed in Britain which later became the Bliss Classification Association. A faceted edition of the scheme has been in preparation under the direction of J. Mills and V. Broughton. Several parts of this new edition, entitled Bliss Bibliographic Classification, have been published.
    Footnote
    Original in: Bliss, H.E.: A bibliographic classification extended by systematic auxuliary schedules for composite specification and notation. vols 1-2. 2nd ed. New York: Wilson 1952. S.3-11.
  8. Mai, J.E.: Classification of the Web : challenges and inquiries (2004) 0.02
    0.021500299 = product of:
      0.043000598 = sum of:
        0.043000598 = product of:
          0.086001195 = sum of:
            0.086001195 = weight(_text_:bibliographic in 3075) [ClassicSimilarity], result of:
              0.086001195 = score(doc=3075,freq=4.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.4866305 = fieldWeight in 3075, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3075)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses the challenges faced by investigations into the classification of the Web and outlines inquiries that are needed to use principles for bibliographic classification to construct classifications of the Web. This paper suggests that the classification of the Web meets challenges that call for inquiries into the theoretical foundation of bibliographic classification theory.
  9. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.02
    0.019749286 = product of:
      0.03949857 = sum of:
        0.03949857 = product of:
          0.07899714 = sum of:
            0.07899714 = weight(_text_:bibliographic in 1138) [ClassicSimilarity], result of:
              0.07899714 = score(doc=1138,freq=6.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.44699866 = fieldWeight in 1138, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1138)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
  10. Furner, J.; Dunbar, A.W.: ¬The treatment of topics relating to people of mixed race in bibliographic classification schemes : a critical race-theoretic approach (2004) 0.02
    0.018812763 = product of:
      0.037625525 = sum of:
        0.037625525 = product of:
          0.07525105 = sum of:
            0.07525105 = weight(_text_:bibliographic in 2640) [ClassicSimilarity], result of:
              0.07525105 = score(doc=2640,freq=4.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.4258017 = fieldWeight in 2640, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The classification of documents about topics relating to people of mixed race is problematic, partly because of the obscurity of racial categorization in general, and partly because of the limitations and inherent biases of bibliographic classification schemes designed primarily for usage in non-digital environments. Critical race theory is an approach that may prove useful in deterrnining how classification systems such as the Dewey Decimal Classification should most appropriately be stuctured.
  11. Maniez, J.: ¬Des classifications aux thesaurus : du bon usage des facettes (1999) 0.02
    0.01845152 = product of:
      0.03690304 = sum of:
        0.03690304 = product of:
          0.07380608 = sum of:
            0.07380608 = weight(_text_:22 in 6404) [ClassicSimilarity], result of:
              0.07380608 = score(doc=6404,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.46428138 = fieldWeight in 6404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6404)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:01:00
  12. Maniez, J.: ¬Du bon usage des facettes : des classifications aux thésaurus (1999) 0.02
    0.01845152 = product of:
      0.03690304 = sum of:
        0.03690304 = product of:
          0.07380608 = sum of:
            0.07380608 = weight(_text_:22 in 3773) [ClassicSimilarity], result of:
              0.07380608 = score(doc=3773,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.46428138 = fieldWeight in 3773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3773)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:01:00
  13. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.02
    0.01845152 = product of:
      0.03690304 = sum of:
        0.03690304 = product of:
          0.07380608 = sum of:
            0.07380608 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
              0.07380608 = score(doc=3176,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.46428138 = fieldWeight in 3176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3176)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    6. 5.2017 18:46:22
  14. Beghtol, C.: Semantic validity : concepts of warrants in bibliographic classification systems (1986) 0.02
    0.016457738 = product of:
      0.032915477 = sum of:
        0.032915477 = product of:
          0.06583095 = sum of:
            0.06583095 = weight(_text_:bibliographic in 3487) [ClassicSimilarity], result of:
              0.06583095 = score(doc=3487,freq=6.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.3724989 = fieldWeight in 3487, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3487)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper argues that the semantic axis of bibliographic classification systems can be found in the various warrants that have been used to justify the utility of classification systems. Classificationists, theorists, and critics have emphasized the syntactic aspects of classification theories and systems, but a number of semantic warrants can be identified. The evolution of four semantic warrants is traced through the development of twentieth-century classification theory: literary warrant, scientific/philosophical warrant, educational warrant, and cultural warrant. It is concluded that further examination of semantic warrants might make possible a rationalized approach to the creation of classification systems for particular uses. The attention of scholars on faceted schemes and classificatory structures had heretofore pulled our attention to the syntactic aspects (e.g., concept division and citation order), with semantics being considered more or less a question of the terms and their relationships and somewhat taken for granted, or at least construed as a unitary aspect. Attention is on the choice of the classes and their meaning, as well as their connection to the world, and not so much on their syntactic relationship. This notion is developed by providing an historical and conceptual overview of the various kinds of warrant discernible in working with bibliographic systems. In Beghtol's definition, warrant concerns more than just the selection of terms, but rather the mapping of a classification system to the context and uses.
  15. Blake, J.: Some issues in the classification of zoology (2011) 0.02
    0.016457738 = product of:
      0.032915477 = sum of:
        0.032915477 = product of:
          0.06583095 = sum of:
            0.06583095 = weight(_text_:bibliographic in 4845) [ClassicSimilarity], result of:
              0.06583095 = score(doc=4845,freq=6.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.3724989 = fieldWeight in 4845, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4845)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper identifies and discusses features of the classification of mammals that are relevant to the bibliographic classification of the subject. The tendency of zoological classifications to change, the differing sizes of groups of species, the use zoologists make of groupings other than taxa, and the links in zoology between classification and nomenclature, are identified as key themes the bibliographic classificationist needs to be aware of. The impact of cladistics, a novel classificatory method and philosophy adopted by zoologists in the last few decades, is identified as the defining feature of the current, rather turbulent, state of zoological classification. However because zoologists still employ some non-cladistic classifications, because cladistic classifications are in some way unsuited to optimal information storage and retrieval, and because some of their consequences for zoological classification are as yet unknown, bibliographic classifications cannot be modelled entirely on them.
  16. Gnoli, C.; Poli, R.: Levels of reality and levels of representation (2004) 0.02
    0.016125225 = product of:
      0.03225045 = sum of:
        0.03225045 = product of:
          0.0645009 = sum of:
            0.0645009 = weight(_text_:bibliographic in 3533) [ClassicSimilarity], result of:
              0.0645009 = score(doc=3533,freq=4.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.3649729 = fieldWeight in 3533, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3533)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontology, in its philosophical meaning, is the discipline investigating the structure of reality. Its findings can be relevant to knowledge organization, and models of knowledge can, in turn, offer relevant ontological suggestions. Several philosophers in time have pointed out that reality is structured into a series of integrative levels, like the physical, the biological, the mental, and the cultural, and that each level plays as a base for the emergence of more complex levels. More detailed theories of levels have been developed by Nicolai Hartmann and James K. Feibleman, and these have been considered as a source for structuring principles in bibliographic classification by both the Classification Research Group (CRG) and Ingetraut Dahlberg. CRG's analysis of levels and of their possible application to a new general classification scheme based an phenomena instead of disciplines, as it was formulated by Derek Austin in 1969, is examined in detail. Both benefits and open problems in applying integrative levels to bibliographic classification are pointed out.
  17. Fairthorne, R.A.: Temporal structure in bibliographic classification (1985) 0.02
    0.016125225 = product of:
      0.03225045 = sum of:
        0.03225045 = product of:
          0.0645009 = sum of:
            0.0645009 = weight(_text_:bibliographic in 3651) [ClassicSimilarity], result of:
              0.0645009 = score(doc=3651,freq=16.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.3649729 = fieldWeight in 3651, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3651)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper, presented at the Ottawa Conference an the Conceptual Basis of the Classification of Knowledge, in 1971, is one of Fairthorne's more perceptive works and deserves a wide audience, especially as it breaks new ground in classification theory. In discussing the notion of discourse, he makes a "distinction between what discourse mentions and what discourse is about" [emphasis added], considered as a "fundamental factor to the relativistic nature of bibliographic classification" (p. 360). A table of mathematical functions, for example, describes exactly something represented by a collection of digits, but, without a preface, this table does not fit into a broader context. Some indication of the author's intent ls needed to fit the table into a broader context. This intent may appear in a title, chapter heading, class number or some other aid. Discourse an and discourse about something "cannot be determined solely from what it mentions" (p. 361). Some kind of background is needed. Fairthorne further develops the theme that knowledge about a subject comes from previous knowledge, thus adding a temporal factor to classification. "Some extra textual criteria are needed" in order to classify (p. 362). For example, "documents that mention the same things, but are an different topics, will have different ancestors, in the sense of preceding documents to which they are linked by various bibliographic characteristics ... [and] ... they will have different descendants" (p. 363). The classifier has to distinguish between documents that "mention exactly the same thing" but are not about the same thing. The classifier does this by classifying "sets of documents that form their histories, their bibliographic world lines" (p. 363). The practice of citation is one method of performing the linking and presents a "fan" of documents connected by a chain of citations to past work. The fan is seen as the effect of generations of documents - each generation connected to the previous one, and all ancestral to the present document. Thus, there are levels in temporal structure-that is, antecedent and successor documents-and these require that documents be identified in relation to other documents. This gives a set of documents an "irrevocable order," a loose order which Fairthorne calls "bibliographic time," and which is "generated by the fact of continual growth" (p. 364). He does not consider "bibliographic time" to be an equivalent to physical time because bibliographic events, as part of communication, require delay. Sets of documents, as indicated above, rather than single works, are used in classification. While an event, a person, a unique feature of the environment, may create a class of one-such as the French Revolution, Napoleon, Niagara Falls-revolutions, emperors, and waterfalls are sets which, as sets, will subsume individuals and make normal classes.
    The fan of past documents may be seen across time as a philosophical "wake," translated documents as a sideways relationship and future documents as another fan spreading forward from a given document (p. 365). The "overlap of reading histories can be used to detect common interests among readers," (p. 365) and readers may be classified accordingly. Finally, Fairthorne rejects the notion of a "general" classification, which he regards as a mirage, to be replaced by a citation-type network to identify classes. An interesting feature of his work lies in his linkage between old and new documents via a bibliographic method-citations, authors' names, imprints, style, and vocabulary - rather than topical (subject) terms. This is an indirect method of creating classes. The subject (aboutness) is conceived as a finite, common sharing of knowledge over time (past, present, and future) as opposed to the more common hierarchy of topics in an infinite schema assumed to be universally useful. Fairthorne, a mathematician by training, is a prolific writer an the foundations of classification and information. His professional career includes work with the Royal Engineers Chemical Warfare Section and the Royal Aircraft Establishment (RAE). He was the founder of the Computing Unit which became the RAE Mathematics Department.
  18. Fairthorne, R.A.: Temporal structure in bibliographic classification (1978) 0.02
    0.0152030075 = product of:
      0.030406015 = sum of:
        0.030406015 = product of:
          0.06081203 = sum of:
            0.06081203 = weight(_text_:bibliographic in 1650) [ClassicSimilarity], result of:
              0.06081203 = score(doc=1650,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.34409973 = fieldWeight in 1650, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1650)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  19. Cheti, A.: ¬Le categorie nell'indicizzazione (1990) 0.02
    0.0152030075 = product of:
      0.030406015 = sum of:
        0.030406015 = product of:
          0.06081203 = sum of:
            0.06081203 = weight(_text_:bibliographic in 3527) [ClassicSimilarity], result of:
              0.06081203 = score(doc=3527,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.34409973 = fieldWeight in 3527, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3527)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Psychologists, philosophers and linguists analyse concepts and investigate their relationship to words. Concepts are also relevant to the issue of bibliographic classification, i.e. "catagorisation". Examines from a chronological point of view the various theories for the analysis and organisation of concepts ranging from the Vickery developed in 1954, to Austin's hypotheses, to Ranganathan's "fundamental categories" and the contribution made by CRG, the Classification Research Group. Illustrates other approaches to categorisation such as Farradane's (relationship between couples of concepts) and calls for a closer study of categories and concepts.
  20. Grimaldi, T.: ¬L'indicizzazione dal punto di vista cognitivo (II) (1996) 0.02
    0.0152030075 = product of:
      0.030406015 = sum of:
        0.030406015 = product of:
          0.06081203 = sum of:
            0.06081203 = weight(_text_:bibliographic in 992) [ClassicSimilarity], result of:
              0.06081203 = score(doc=992,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.34409973 = fieldWeight in 992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0625 = fieldNorm(doc=992)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In relation to indexing, one of the chief implications of cognitive epistemology is the necessity for redefining knowledge representation concepts for information filing and retrieval purposes. Such a redefinition involves abandoning the traditional, hierarchical, closed-structure classification model. Considers the following in detail: a semiotic critique of classification principles; Ranganathan's classification theory; Ranganathan and cognitive epistemology; and some reflections on the DDC and the Bliss Bibliographic Classification

Years

Languages

  • e 45
  • f 3
  • i 2
  • chi 1
  • d 1
  • More… Less…

Types

  • a 50
  • m 2
  • el 1
  • More… Less…