Search (42 results, page 1 of 3)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2010 TO 2020}
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.03
    0.027037721 = product of:
      0.054075442 = sum of:
        0.054075442 = product of:
          0.21630177 = sum of:
            0.21630177 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.21630177 = score(doc=400,freq=2.0), product of:
                0.38486624 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045395818 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.02
    0.018025149 = product of:
      0.036050297 = sum of:
        0.036050297 = product of:
          0.14420119 = sum of:
            0.14420119 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.14420119 = score(doc=5820,freq=2.0), product of:
                0.38486624 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045395818 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Sebastian, Y.: Literature-based discovery by learning heterogeneous bibliographic information networks (2017) 0.02
    0.016997479 = product of:
      0.033994958 = sum of:
        0.033994958 = product of:
          0.067989916 = sum of:
            0.067989916 = weight(_text_:bibliographic in 535) [ClassicSimilarity], result of:
              0.067989916 = score(doc=535,freq=10.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.3847152 = fieldWeight in 535, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.03125 = fieldNorm(doc=535)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Literature-based discovery (LBD) research aims at finding effective computational methods for predicting previously unknown connections between clusters of research papers from disparate research areas. Existing methods encompass two general approaches. The first approach searches for these unknown connections by examining the textual contents of research papers. In addition to the existing textual features, the second approach incorporates structural features of scientific literatures, such as citation structures. These approaches, however, have not considered research papers' latent bibliographic metadata structures as important features that can be used for predicting previously unknown relationships between them. This thesis investigates a new graph-based LBD method that exploits the latent bibliographic metadata connections between pairs of research papers. The heterogeneous bibliographic information network is proposed as an efficient graph-based data structure for modeling the complex relationships between these metadata. In contrast to previous approaches, this method seamlessly combines textual and citation information in the form of pathbased metadata features for predicting future co-citation links between research papers from disparate research fields. The results reported in this thesis provide evidence that the method is effective for reconstructing the historical literature-based discovery hypotheses. This thesis also investigates the effects of semantic modeling and topic modeling on the performance of the proposed method. For semantic modeling, a general-purpose word sense disambiguation technique is proposed to reduce the lexical ambiguity in the title and abstract of research papers. The experimental results suggest that the reduced lexical ambiguity did not necessarily lead to a better performance of the method. This thesis discusses some of the possible contributing factors to these results. Finally, topic modeling is used for learning the latent topical relations between research papers. The learned topic model is incorporated into the heterogeneous bibliographic information network graph and allows new predictive features to be learned. The results in this thesis suggest that topic modeling improves the performance of the proposed method by increasing the overall accuracy for predicting the future co-citation links between disparate research papers.
  4. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.02
    0.015376267 = product of:
      0.030752534 = sum of:
        0.030752534 = product of:
          0.061505068 = sum of:
            0.061505068 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.061505068 = score(doc=5576,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13.12.2017 14:17:22
  5. Nielsen, M.: Neuronale Netze : Alpha Go - Computer lernen Intuition (2018) 0.02
    0.015376267 = product of:
      0.030752534 = sum of:
        0.030752534 = product of:
          0.061505068 = sum of:
            0.061505068 = weight(_text_:22 in 4523) [ClassicSimilarity], result of:
              0.061505068 = score(doc=4523,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.38690117 = fieldWeight in 4523, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4523)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Spektrum der Wissenschaft. 2018, H.1, S.22-27
  6. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.013047196 = product of:
      0.026094392 = sum of:
        0.026094392 = product of:
          0.052188784 = sum of:
            0.052188784 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.052188784 = score(doc=3355,freq=4.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  7. Becker, H.-G.; Förster, F.: Vernetztes Wissen : Ereignisse in der bibliografischen Dokumentation (2010) 0.01
    0.011402255 = product of:
      0.02280451 = sum of:
        0.02280451 = product of:
          0.04560902 = sum of:
            0.04560902 = weight(_text_:bibliographic in 3494) [ClassicSimilarity], result of:
              0.04560902 = score(doc=3494,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2580748 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Innerhalb der Gedächtnisinstitutionen Bibliothek, Museum und Archiv gibt es je eigene Beschreibungsmodelle der beherbergten Objekte und Materialien. Für eine genauere bibliografische Erschließung wurde im Bibliotheksbereich das von Benutzerbedürfnissen ausgehende, statische Modell "Functional Requirements for Bibliographic Records" (FRBR) geschaffen, dessen ungenauer »Werk«-Begriff ebenso thematisiert wird wie die schwer zu realisierende Übertragbarkeit des Modells auf Nicht-Buchmaterialien. Die Museumswelt orientiert die Darstellung ihrer Bestände am CIDOC Conceptual Reference Model (CRM), das sich hinsichtlich der Beschreibung heterogener Museumsobjekte, also Artefakten künstlerischer und intellektueller Gestaltung, als hilfreich erwiesen hat. In gegenseitigem Austausch zwischen IFLA und ICOM wurde FRBR mit CRM harmonisiert. Das Ergebnis, FRBRoo (objektorientiertes FRBR), zeigt seine Vorzüge zum einen in einer strengeren Interpretation der Entitäten der Gruppe 1 des FRBR-Modells und zum anderen in einer genaueren Abbildung von Prozessen bzw. Ereignissen. Beispiele zum Anwendungsbezug von FRBRoo zeigen dessen Zugewinn für die wissenschaftliche Erschließung hand-, druck- und online-schriftlicher Quellen, Werken der Darstellenden Kunst, Landkarten und Musikalien innerhalb einer CRM-basierten Datenbank.
  8. Melgar Estrada, L.M.: Topic maps from a knowledge organization perspective (2011) 0.01
    0.011402255 = product of:
      0.02280451 = sum of:
        0.02280451 = product of:
          0.04560902 = sum of:
            0.04560902 = weight(_text_:bibliographic in 4298) [ClassicSimilarity], result of:
              0.04560902 = score(doc=4298,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2580748 = fieldWeight in 4298, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4298)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article comprises a literature review and conceptual analysis of Topic Maps-the ISO standard for representing information about the structure of information resources-according to the principles of Knowledge Organization (KO). Using the main principles from this discipline, the study shows how Topic Maps is proposed as an ontology model independent of technology. Topic Maps constitutes a 'bibliographic' meta-language able to represent, extend, and integrate almost all existing Knowledge Organization Systems (KOS) in a standards-based generic model applicable to digital content and to the Web. This report also presents an inventory of the current applications of Topic Maps in Libraries, Archives, and Museums (LAM), as well as in the Digital Humanities. Finally, some directions for further research are suggested, which relate Topic Maps to the main research trends in KO.
  9. Sperber, W.; Ion, P.D.F.: Content analysis and classification in mathematics (2011) 0.01
    0.011402255 = product of:
      0.02280451 = sum of:
        0.02280451 = product of:
          0.04560902 = sum of:
            0.04560902 = weight(_text_:bibliographic in 4818) [ClassicSimilarity], result of:
              0.04560902 = score(doc=4818,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2580748 = fieldWeight in 4818, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4818)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The number of publications in mathematics increases faster each year. Presently far more than 100,000 mathematically relevant journal articles and books are published annually. Efficient and high-quality content analysis of this material is important for mathematical bibliographic services such as ZBMath or MathSciNet. Content analysis has different facets and levels: classification, keywords, abstracts and reviews, and (in the future) formula analysis. It is the opinion of the authors that the different levels have to be enhanced and combined using the methods and technology of the Semantic Web. In the presentation, the problems and deficits of the existing methods and tools, the state of the art and current activities are discussed. As a first step, the Mathematical Subject Classification Scheme (MSC), has been encoded with Simple Knowledge Organization System (SKOS) and Resource Description Framework (RDF) at its recent revision to MSC2010. The use of SKOS principally opens new possibilities for the enrichment and wider deployment of this classification scheme and for machine-based content analysis of mathematical publications.
  10. Campbell, D.G.: Farradane's relational indexing and its relationship to hyperlinking in Alzheimer's information (2012) 0.01
    0.011402255 = product of:
      0.02280451 = sum of:
        0.02280451 = product of:
          0.04560902 = sum of:
            0.04560902 = weight(_text_:bibliographic in 847) [ClassicSimilarity], result of:
              0.04560902 = score(doc=847,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2580748 = fieldWeight in 847, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=847)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In an ongoing investigation of the relationship between Jason Farradane's relational indexing principles and concept combination in Web-based information on Alzheimer's Disease, the hyperlinks of three consumer health information websites are examined to see how well the linking relationships map to Farradane's relational operators, as well as to the linking attributes in HTML 5. The links were found to be largely bibliographic in nature, and as such mapped well onto HTML 5. Farradane's operators were less effective at capturing the individual links; nonetheless, the two dimensions of his relational matrix-association and discrimination-reveal a crucial underlying strategy of the emotionally-charged mediation between complex information and users who are consulting it under severe stress.
  11. Zhang, L.: Linking information through function (2014) 0.01
    0.011402255 = product of:
      0.02280451 = sum of:
        0.02280451 = product of:
          0.04560902 = sum of:
            0.04560902 = weight(_text_:bibliographic in 1526) [ClassicSimilarity], result of:
              0.04560902 = score(doc=1526,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2580748 = fieldWeight in 1526, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1526)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    How information resources can be meaningfully related has been addressed in contexts from bibliographic entries to hyperlinks and, more recently, linked data. The genre structure and relationships among genre structure constituents shed new light on organizing information by purpose or function. This study examines the relationships among a set of functional units previously constructed in a taxonomy, each of which is a chunk of information embedded in a document and is distinct in terms of its communicative function. Through a card-sort study, relationships among functional units were identified with regard to their occurrence and function. The findings suggest that a group of functional units can be identified, collocated, and navigated by particular relationships. Understanding how functional units are related to each other is significant in linking information pieces in documents to support finding, aggregating, and navigating information in a distributed information environment.
  12. Buizza, G.: Subject analysis and indexing : an "Italian version" of the analytico-synthetic model (2011) 0.01
    0.011402255 = product of:
      0.02280451 = sum of:
        0.02280451 = product of:
          0.04560902 = sum of:
            0.04560902 = weight(_text_:bibliographic in 1812) [ClassicSimilarity], result of:
              0.04560902 = score(doc=1812,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2580748 = fieldWeight in 1812, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1812)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Series
    IFLA series on bibliographic control; vol. 42
  13. Deokattey, S.; Neelameghan, A.; Kumar, V.: ¬A method for developing a domain ontology : a case study for a multidisciplinary subject (2010) 0.01
    0.010763386 = product of:
      0.021526773 = sum of:
        0.021526773 = product of:
          0.043053545 = sum of:
            0.043053545 = weight(_text_:22 in 3694) [ClassicSimilarity], result of:
              0.043053545 = score(doc=3694,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2708308 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2010 19:41:16
  14. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.01
    0.010763386 = product of:
      0.021526773 = sum of:
        0.021526773 = product of:
          0.043053545 = sum of:
            0.043053545 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.043053545 = score(doc=4792,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  15. Madalli, D.P.; Balaji, B.P.; Sarangi, A.K.: Music domain analysis for building faceted ontological representation (2014) 0.01
    0.010763386 = product of:
      0.021526773 = sum of:
        0.021526773 = product of:
          0.043053545 = sum of:
            0.043053545 = weight(_text_:22 in 1437) [ClassicSimilarity], result of:
              0.043053545 = score(doc=1437,freq=2.0), product of:
                0.15896842 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045395818 = queryNorm
                0.2708308 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  16. Broughton, V.: Facet analysis as a tool for modelling subject domains and terminologies (2011) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 4826) [ClassicSimilarity], result of:
              0.03800752 = score(doc=4826,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 4826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4826)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Facet analysis is proposed as a general theory of knowledge organization, with an associated methodology that may be applied to the development of terminology tools in a variety of contexts and formats. Faceted classifications originated as a means of representing complexity in semantic content that facilitates logical organization and effective retrieval in a physical environment. This is achieved through meticulous analysis of concepts, their structural and functional status (based on fundamental categories), and their inter-relationships. These features provide an excellent basis for the general conceptual modelling of domains, and for the generation of KOS other than systematic classifications. This is demonstrated by the adoption of a faceted approach to many web search and visualization tools, and by the emergence of a facet based methodology for the construction of thesauri. Current work on the Bliss Bibliographic Classification (Second Edition) is investigating the ways in which the full complexity of faceted structures may be represented through encoded data, capable of generating intellectually and mechanically compatible forms of indexing tools from a single source. It is suggested that a number of research questions relating to the Semantic Web could be tackled through the medium of facet analysis.
  17. Román, J.H.; Hulin, K.J.; Collins, L.M.; Powell, J.E.: Entity disambiguation using semantic networks (2012) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 461) [ClassicSimilarity], result of:
              0.03800752 = score(doc=461,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 461, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=461)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A major stumbling block preventing machines from understanding text is the problem of entity disambiguation. While humans find it easy to determine that a person named in one story is the same person referenced in a second story, machines rely heavily on crude heuristics such as string matching and stemming to make guesses as to whether nouns are coreferent. A key advantage that humans have over machines is the ability to mentally make connections between ideas and, based on these connections, reason how likely two entities are to be the same. Mirroring this natural thought process, we have created a prototype framework for disambiguating entities that is based on connectedness. In this article, we demonstrate it in the practical application of disambiguating authors across a large set of bibliographic records. By representing knowledge from the records as edges in a graph between a subject and an object, we believe that the problem of disambiguating entities reduces to the problem of discovering the most strongly connected nodes in a graph. The knowledge from the records comes in many different forms, such as names of people, date of publication, and themes extracted from the text of the abstract. These different types of knowledge are fused to create the graph required for disambiguation. Furthermore, the resulting graph and framework can be used for more complex operations.
  18. Wu, D.; Shi, J.: Classical music recording ontology used in a library catalog (2016) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 3179) [ClassicSimilarity], result of:
              0.03800752 = score(doc=3179,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 3179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3179)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In order to improve the organization of classical music information resources, we constructed a classical music recording ontology, on top of which we then designed an online classical music catalog. Our construction of the classical music recording ontology consisted of three steps: identifying the purpose, analyzing the ontology, and encoding the ontology. We identified the main classes and properties of the domain by investigating classical music recording resources and users' information needs. We implemented the ontology in the Web Ontology Language (OWL) using five steps: transforming the properties, encoding the transformed properties, defining ranges of the properties, constructing individuals, and standardizing the ontology. In constructing the online catalog, we first designed the structure and functions of the catalog based on investigations into users' information needs and information-seeking behaviors. Then we extracted classes and properties of the ontology using the Apache Jena application programming interface (API), and constructed a catalog in the Java environment. The catalog provides a hierarchical main page (built using the Functional Requirements for Bibliographic Records (FRBR) model), a classical music information network and integrated information service; this combination of features greatly eases the task of finding classical music recordings and more information about classical music.
  19. Wen, B.; Horlings, E.; Zouwen, M. van der; Besselaar, P. van den: Mapping science through bibliometric triangulation : an experimental approach applied to water research (2017) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 3437) [ClassicSimilarity], result of:
              0.03800752 = score(doc=3437,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 3437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3437)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The idea of constructing science maps based on bibliographic data has intrigued researchers for decades, and various techniques have been developed to map the structure of research disciplines. Most science mapping studies use a single method. However, as research fields have various properties, a valid map of a field should actually be composed of a set of maps derived from a series of investigations using different methods. That leads to the question of what can be learned from a combination-triangulation-of these different science maps. In this paper we propose a method for triangulation, using the example of water science. We combine three different mapping approaches: journal-journal citation relations (JJCR), shared author keywords (SAK), and title word-cited reference co-occurrence (TWRC). Our results demonstrate that triangulation of JJCR, SAK, and TWRC produces a more comprehensive picture than each method applied individually. The outcomes from the three different approaches can be associated with each other and systematically interpreted to provide insights into the complex multidisciplinary structure of the field of water research.
  20. Branch, F.; Arias, T.; Kennah, J.; Phillips, R.; Windleharth, T.; Lee, J.H.: Representing transmedia fictional worlds through ontology (2017) 0.01
    0.00950188 = product of:
      0.01900376 = sum of:
        0.01900376 = product of:
          0.03800752 = sum of:
            0.03800752 = weight(_text_:bibliographic in 3958) [ClassicSimilarity], result of:
              0.03800752 = score(doc=3958,freq=2.0), product of:
                0.17672792 = queryWeight, product of:
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.045395818 = queryNorm
                0.21506234 = fieldWeight in 3958, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.893044 = idf(docFreq=2449, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3958)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Currently, there is no structured data standard for representing elements commonly found in transmedia fictional worlds. Although there are websites dedicated to individual universes, the information found on these sites separate out the various formats, concentrate on only the bibliographic aspects of the material, and are only searchable with full text. We have created an ontological model that will allow various user groups interested in transmedia to search for and retrieve the information contained in these worlds based upon their structure. We conducted a domain analysis and user studies based on the contents of Harry Potter, Lord of the Rings, the Marvel Universe, and Star Wars in order to build a new model using Ontology Web Language (OWL) and an artificial intelligence-reasoning engine. This model can infer connections between transmedia properties such as characters, elements of power, items, places, events, and so on. This model will facilitate better search and retrieval of the information contained within these vast story universes for all users interested in them. The result of this project is an OWL ontology reflecting real user needs based upon user research, which is intuitive for users and can be used by artificial intelligence systems.

Languages

  • e 35
  • d 7

Types

  • a 34
  • el 4
  • x 3
  • m 2
  • r 1
  • More… Less…