Search (43 results, page 1 of 3)

  • × theme_ss:"Data Mining"
  1. Bath, P.A.: Data mining in health and medical information (2003) 0.05
    0.04511405 = product of:
      0.067671075 = sum of:
        0.05168803 = weight(_text_:development in 4263) [ClassicSimilarity], result of:
          0.05168803 = score(doc=4263,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.32281733 = fieldWeight in 4263, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0625 = fieldNorm(doc=4263)
        0.015983047 = product of:
          0.04794914 = sum of:
            0.04794914 = weight(_text_:29 in 4263) [ClassicSimilarity], result of:
              0.04794914 = score(doc=4263,freq=2.0), product of:
                0.1542157 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04384008 = queryNorm
                0.31092256 = fieldWeight in 4263, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4263)
          0.33333334 = coord(1/3)
      0.6666667 = coord(2/3)
    
    Abstract
    Data mining (DM) is part of a process by which information can be extracted from data or databases and used to inform decision making in a variety of contexts (Benoit, 2002; Michalski, Bratka & Kubat, 1997). DM includes a range of tools and methods for extractiog information; their use in the commercial sector for knowledge extraction and discovery has been one of the main driving forces in their development (Adriaans & Zantinge, 1996; Benoit, 2002). DM has been developed and applied in numerous areas. This review describes its use in analyzing health and medical information.
    Date
    23.10.2005 18:29:03
  2. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.05
    0.045018204 = product of:
      0.0675273 = sum of:
        0.05168803 = weight(_text_:development in 1737) [ClassicSimilarity], result of:
          0.05168803 = score(doc=1737,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.32281733 = fieldWeight in 1737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.01583927 = product of:
          0.047517806 = sum of:
            0.047517806 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.047517806 = score(doc=1737,freq=2.0), product of:
                0.1535205 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04384008 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.33333334 = coord(1/3)
      0.6666667 = coord(2/3)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
  3. Tu, Y.-N.; Hsu, S.-L.: Constructing conceptual trajectory maps to trace the development of research fields (2016) 0.04
    0.043962225 = product of:
      0.06594334 = sum of:
        0.055953935 = weight(_text_:development in 3059) [ClassicSimilarity], result of:
          0.055953935 = score(doc=3059,freq=6.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.34946 = fieldWeight in 3059, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3059)
        0.009989405 = product of:
          0.029968213 = sum of:
            0.029968213 = weight(_text_:29 in 3059) [ClassicSimilarity], result of:
              0.029968213 = score(doc=3059,freq=2.0), product of:
                0.1542157 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04384008 = queryNorm
                0.19432661 = fieldWeight in 3059, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3059)
          0.33333334 = coord(1/3)
      0.6666667 = coord(2/3)
    
    Abstract
    This study proposes a new method to construct and trace the trajectory of conceptual development of a research field by combining main path analysis, citation analysis, and text-mining techniques. Main path analysis, a method used commonly to trace the most critical path in a citation network, helps describe the developmental trajectory of a research field. This study extends the main path analysis method and applies text-mining techniques in the new method, which reflects the trajectory of conceptual development in an academic research field more accurately than citation frequency, which represents only the articles examined. Articles can be merged based on similarity of concepts, and by merging concepts the history of a research field can be described more precisely. The new method was applied to the "h-index" and "text mining" fields. The precision, recall, and F-measures of the h-index were 0.738, 0.652, and 0.658 and those of text-mining were 0.501, 0.653, and 0.551, respectively. Last, this study not only establishes the conceptual trajectory map of a research field, but also recommends keywords that are more precise than those used currently by researchers. These precise keywords could enable researchers to gather related works more quickly than before.
    Date
    21. 7.2016 19:29:19
  4. Raan, A.F.J. van; Noyons, E.C.M.: Discovery of patterns of scientific and technological development and knowledge transfer (2002) 0.04
    0.03711707 = product of:
      0.055675603 = sum of:
        0.045686197 = weight(_text_:development in 3603) [ClassicSimilarity], result of:
          0.045686197 = score(doc=3603,freq=4.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.2853329 = fieldWeight in 3603, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3603)
        0.009989405 = product of:
          0.029968213 = sum of:
            0.029968213 = weight(_text_:29 in 3603) [ClassicSimilarity], result of:
              0.029968213 = score(doc=3603,freq=2.0), product of:
                0.1542157 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04384008 = queryNorm
                0.19432661 = fieldWeight in 3603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3603)
          0.33333334 = coord(1/3)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper addresses a bibliometric methodology to discover the structure of the scientific 'landscape' in order to gain detailed insight into the development of MD fields, their interaction, and the transfer of knowledge between them. This methodology is appropriate to visualize the position of MD activities in relation to interdisciplinary MD developments, and particularly in relation to socio-economic problems. Furthermore, it allows the identification of the major actors. It even provides the possibility of foresight. We describe a first approach to apply bibliometric mapping as an instrument to investigate characteristics of knowledge transfer. In this paper we discuss the creation of 'maps of science' with help of advanced bibliometric methods. This 'bibliometric cartography' can be seen as a specific type of data-mining, applied to large amounts of scientific publications. As an example we describe the mapping of the field neuroscience, one of the largest and fast growing fields in the life sciences. The number of publications covered by this database is about 80,000 per year, the period covered is 1995-1998. Current research is going an to update the mapping for the years 1999-2002. This paper addresses the main lines of the methodology and its application in the study of knowledge transfer.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
  5. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.03
    0.028136378 = product of:
      0.042204566 = sum of:
        0.03230502 = weight(_text_:development in 5011) [ClassicSimilarity], result of:
          0.03230502 = score(doc=5011,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.20176083 = fieldWeight in 5011, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.009899544 = product of:
          0.029698629 = sum of:
            0.029698629 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.029698629 = score(doc=5011,freq=2.0), product of:
                0.1535205 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04384008 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.33333334 = coord(1/3)
      0.6666667 = coord(2/3)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
  6. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.02
    0.021214878 = product of:
      0.06364463 = sum of:
        0.06364463 = product of:
          0.09546694 = sum of:
            0.04794914 = weight(_text_:29 in 1270) [ClassicSimilarity], result of:
              0.04794914 = score(doc=1270,freq=2.0), product of:
                0.1542157 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04384008 = queryNorm
                0.31092256 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
            0.047517806 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.047517806 = score(doc=1270,freq=2.0), product of:
                0.1535205 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04384008 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Date
    5. 4.1996 15:29:15
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  7. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.02
    0.018563017 = product of:
      0.055689048 = sum of:
        0.055689048 = product of:
          0.08353357 = sum of:
            0.041955493 = weight(_text_:29 in 2908) [ClassicSimilarity], result of:
              0.041955493 = score(doc=2908,freq=2.0), product of:
                0.1542157 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04384008 = queryNorm
                0.27205724 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
            0.04157808 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.04157808 = score(doc=2908,freq=2.0), product of:
                0.1535205 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04384008 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Date
    5. 4.1996 15:29:15
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  8. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.017560929 = product of:
      0.026341394 = sum of:
        0.022381576 = weight(_text_:development in 1789) [ClassicSimilarity], result of:
          0.022381576 = score(doc=1789,freq=6.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.13978401 = fieldWeight in 1789, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.0039598173 = product of:
          0.011879452 = sum of:
            0.011879452 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.011879452 = score(doc=1789,freq=2.0), product of:
                0.1535205 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04384008 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.33333334 = coord(1/3)
      0.6666667 = coord(2/3)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
  9. Nicholson, S.: Bibliomining for automated collection development in a digital library setting : using data mining to discover Web-based scholarly research works (2003) 0.02
    0.0152287325 = product of:
      0.045686197 = sum of:
        0.045686197 = weight(_text_:development in 1867) [ClassicSimilarity], result of:
          0.045686197 = score(doc=1867,freq=4.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.2853329 = fieldWeight in 1867, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1867)
      0.33333334 = coord(1/3)
    
    Abstract
    This research creates an intelligent agent for automated collection development in a digital library setting. It uses a predictive model based an facets of each Web page to select scholarly works. The criteria came from the academic library selection literature, and a Delphi study was used to refine the list to 41 criteria. A Perl program was designed to analyze a Web page for each criterion and applied to a large collection of scholarly and nonscholarly Web pages. Bibliomining, or data mining for libraries, was then used to create different classification models. Four techniques were used: logistic regression, nonparametric discriminant analysis, classification trees, and neural networks. Accuracy and return were used to judge the effectiveness of each model an test datasets. In addition, a set of problematic pages that were difficult to classify because of their similarity to scholarly research was gathered and classified using the models. The resulting models could be used in the selection process to automatically create a digital library of Webbased scholarly research works. In addition, the technique can be extended to create a digital library of any type of structured electronic information.
  10. Miao, Q.; Li, Q.; Zeng, D.: Fine-grained opinion mining by integrating multiple review sources (2010) 0.02
    0.015075676 = product of:
      0.04522703 = sum of:
        0.04522703 = weight(_text_:development in 4104) [ClassicSimilarity], result of:
          0.04522703 = score(doc=4104,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.28246516 = fieldWeight in 4104, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4104)
      0.33333334 = coord(1/3)
    
    Abstract
    With the rapid development of Web 2.0, online reviews have become extremely valuable sources for mining customers' opinions. Fine-grained opinion mining has attracted more and more attention of both applied and theoretical research. In this article, the authors study how to automatically mine product features and opinions from multiple review sources. Specifically, they propose an integration strategy to solve the issue. Within the integration strategy, the authors mine domain knowledge from semistructured reviews and then exploit the domain knowledge to assist product feature extraction and sentiment orientation identification from unstructured reviews. Finally, feature-opinion tuples are generated. Experimental results on real-world datasets show that the proposed approach is effective.
  11. Whittle, M.; Eaglestone, B.; Ford, N.; Gillet, V.J.; Madden, A.: Data mining of search engine logs (2007) 0.01
    0.012922008 = product of:
      0.038766023 = sum of:
        0.038766023 = weight(_text_:development in 1330) [ClassicSimilarity], result of:
          0.038766023 = score(doc=1330,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.242113 = fieldWeight in 1330, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.046875 = fieldNorm(doc=1330)
      0.33333334 = coord(1/3)
    
    Abstract
    This article reports on the development of a novel method for the analysis of Web logs. The method uses techniques that look for similarities between queries and identify sequences of query transformation. It allows sequences of query transformations to be represented as graphical networks, thereby giving a richer view of search behavior than is possible with the usual sequential descriptions. We also perform a basic analysis to study the correlations between observed transformation codes, with results that appear to show evidence of behavior habits. The method was developed using transaction logs from the Excite search engine to provide a tool for an ongoing research project that is endeavoring to develop a greater understanding of Web-based searching by the general public.
  12. Sun, X.; Lin, H.: Topical community detection from mining user tagging behavior and interest (2013) 0.01
    0.012922008 = product of:
      0.038766023 = sum of:
        0.038766023 = weight(_text_:development in 605) [ClassicSimilarity], result of:
          0.038766023 = score(doc=605,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.242113 = fieldWeight in 605, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.046875 = fieldNorm(doc=605)
      0.33333334 = coord(1/3)
    
    Abstract
    With the development of Web2.0, social tagging systems in which users can freely choose tags to annotate resources according to their interests have attracted much attention. In particular, literature on the emergence of collective intelligence in social tagging systems has increased. In this article, we propose a probabilistic generative model to detect latent topical communities among users. Social tags and resource contents are leveraged to model user interest in two similar and correlated ways. Our primary goal is to capture user tagging behavior and interest and discover the emergent topical community structure. The communities should be groups of users with frequent social interactions as well as similar topical interests, which would have important research implications for personalized information services. Experimental results on two real social tagging data sets with different genres have shown that the proposed generative model more accurately models user interest and detects high-quality and meaningful topical communities.
  13. Wu, T.; Pottenger, W.M.: ¬A semi-supervised active learning algorithm for information extraction from textual data (2005) 0.01
    0.010768341 = product of:
      0.03230502 = sum of:
        0.03230502 = weight(_text_:development in 3237) [ClassicSimilarity], result of:
          0.03230502 = score(doc=3237,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.20176083 = fieldWeight in 3237, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3237)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article we present a semi-supervised active learning algorithm for pattern discovery in information extraction from textual data. The patterns are reduced regular expressions composed of various characteristics of features useful in information extraction. Our major contribution is a semi-supervised learning algorithm that extracts information from a set of examples labeled as relevant or irrelevant to a given attribute. The approach is semi-supervised because it does not require precise labeling of the exact location of features in the training data. This significantly reduces the effort needed to develop a training set. An active learning algorithm is used to assist the semi-supervised learning algorithm to further reduce the training set development effort. The active learning algorithm is seeded with a Single positive example of a given attribute. The context of the seed is used to automatically identify candidates for additional positive examples of the given attribute. Candidate examples are manually pruned during the active learning phase, and our semi-supervised learning algorithm automatically discovers reduced regular expressions for each attribute. We have successfully applied this learning technique in the extraction of textual features from police incident reports, university crime reports, and patents. The performance of our algorithm compares favorably with competitive extraction systems being used in criminal justice information systems.
  14. Haravu, L.J.; Neelameghan, A.: Text mining and data mining in knowledge organization and discovery : the making of knowledge-based products (2003) 0.01
    0.010768341 = product of:
      0.03230502 = sum of:
        0.03230502 = weight(_text_:development in 5653) [ClassicSimilarity], result of:
          0.03230502 = score(doc=5653,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.20176083 = fieldWeight in 5653, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5653)
      0.33333334 = coord(1/3)
    
    Abstract
    Discusses the importance of knowledge organization in the context of the information overload caused by the vast quantities of data and information accessible on internal and external networks of an organization. Defines the characteristics of a knowledge-based product. Elaborates on the techniques and applications of text mining in developing knowledge products. Presents two approaches, as case studies, to the making of knowledge products: (1) steps and processes in the planning, designing and development of a composite multilingual multimedia CD product, with the potential international, inter-cultural end users in view, and (2) application of natural language processing software in text mining. Using a text mining software, it is possible to link concept terms from a processed text to a related thesaurus, glossary, schedules of a classification scheme, and facet structured subject representations. Concludes that the products of text mining and data mining could be made more useful if the features of a faceted scheme for subject classification are incorporated into text mining techniques and products.
  15. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Huang, J.X.; Jemaa, M.B.: Mining correlations between medically dependent features and image retrieval models for query classification (2017) 0.01
    0.010768341 = product of:
      0.03230502 = sum of:
        0.03230502 = weight(_text_:development in 3607) [ClassicSimilarity], result of:
          0.03230502 = score(doc=3607,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.20176083 = fieldWeight in 3607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3607)
      0.33333334 = coord(1/3)
    
    Abstract
    The abundance of medical resources has encouraged the development of systems that allow for efficient searches of information in large medical image data sets. State-of-the-art image retrieval models are classified into three categories: content-based (visual) models, textual models, and combined models. Content-based models use visual features to answer image queries, textual image retrieval models use word matching to answer textual queries, and combined image retrieval models, use both textual and visual features to answer queries. Nevertheless, most of previous works in this field have used the same image retrieval model independently of the query type. In this article, we define a list of generic and specific medical query features and exploit them in an association rule mining technique to discover correlations between query features and image retrieval models. Based on these rules, we propose to use an associative classifier (NaiveClass) to find the best suitable retrieval model given a new textual query. We also propose a second associative classifier (SmartClass) to select the most appropriate default class for the query. Experiments are performed on Medical ImageCLEF queries from 2008 to 2012 to evaluate the impact of the proposed query features on the classification performance. The results show that combining our proposed specific and generic query features is effective in query classification.
  16. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.01
    0.010768341 = product of:
      0.03230502 = sum of:
        0.03230502 = weight(_text_:development in 4019) [ClassicSimilarity], result of:
          0.03230502 = score(doc=4019,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.20176083 = fieldWeight in 4019, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4019)
      0.33333334 = coord(1/3)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
  17. Saggi, M.K.; Jain, S.: ¬A survey towards an integration of big data analytics to big insights for value-creation (2018) 0.01
    0.010768341 = product of:
      0.03230502 = sum of:
        0.03230502 = weight(_text_:development in 5053) [ClassicSimilarity], result of:
          0.03230502 = score(doc=5053,freq=2.0), product of:
            0.16011542 = queryWeight, product of:
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.04384008 = queryNorm
            0.20176083 = fieldWeight in 5053, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.652261 = idf(docFreq=3116, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5053)
      0.33333334 = coord(1/3)
    
    Abstract
    Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decision-making. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V's characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.
  18. Budzik, J.; Hammond, K.J.; Birnbaum, L.: Information access in context (2001) 0.01
    0.009323443 = product of:
      0.027970329 = sum of:
        0.027970329 = product of:
          0.08391099 = sum of:
            0.08391099 = weight(_text_:29 in 3835) [ClassicSimilarity], result of:
              0.08391099 = score(doc=3835,freq=2.0), product of:
                0.1542157 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04384008 = queryNorm
                0.5441145 = fieldWeight in 3835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3835)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    29. 3.2002 17:31:17
  19. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.01
    0.009239574 = product of:
      0.027718721 = sum of:
        0.027718721 = product of:
          0.08315616 = sum of:
            0.08315616 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.08315616 = score(doc=4577,freq=2.0), product of:
                0.1535205 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04384008 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    2. 4.2000 18:01:22
  20. Witten, I.H.; Frank, E.: Data Mining : Praktische Werkzeuge und Techniken für das maschinelle Lernen (2000) 0.01
    0.007991524 = product of:
      0.023974571 = sum of:
        0.023974571 = product of:
          0.07192371 = sum of:
            0.07192371 = weight(_text_:29 in 6833) [ClassicSimilarity], result of:
              0.07192371 = score(doc=6833,freq=2.0), product of:
                0.1542157 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04384008 = queryNorm
                0.46638384 = fieldWeight in 6833, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6833)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    27. 1.1996 10:29:55

Years

Languages

  • e 29
  • d 14

Types

  • a 36
  • m 5
  • s 4
  • el 2
  • More… Less…