Search (34 results, page 1 of 2)

  • × author_ss:"Green, R."
  1. Green, R.: Facet detection using WorldCat and WordNet (2014) 0.03
    0.02514248 = product of:
      0.037713718 = sum of:
        0.012945832 = weight(_text_:in in 1419) [ClassicSimilarity], result of:
          0.012945832 = score(doc=1419,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.1822149 = fieldWeight in 1419, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1419)
        0.024767887 = product of:
          0.049535774 = sum of:
            0.049535774 = weight(_text_:22 in 1419) [ClassicSimilarity], result of:
              0.049535774 = score(doc=1419,freq=2.0), product of:
                0.18290302 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052230705 = queryNorm
                0.2708308 = fieldWeight in 1419, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1419)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Because procedures for establishing facets tend toward subjectivity, this pilot project investigates whether the facet structure of a subject literature can be discerned automatically on the basis of its own metadata. Nouns found in the titles of works retrieved from the WorldCat bibliographic database based on Dewey number are mapped against the nodes of the WordNet noun network. Density measures are computed for these nodes to identify nodes best summarizing the title noun data / best corresponding to facets of the subject. Results of the work to date are promising enough to warrant further investigation.
    Series
    Advances in knowledge organization; vol. 14
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.02
    0.021861114 = product of:
      0.03279167 = sum of:
        0.015100324 = weight(_text_:in in 2282) [ClassicSimilarity], result of:
          0.015100324 = score(doc=2282,freq=16.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.21253976 = fieldWeight in 2282, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2282)
        0.017691348 = product of:
          0.035382695 = sum of:
            0.035382695 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
              0.035382695 = score(doc=2282,freq=2.0), product of:
                0.18290302 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052230705 = queryNorm
                0.19345059 = fieldWeight in 2282, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2282)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The structure of a classification system contributes in a variety of ways to representing semantic relationships between its topics in the context of subject authority control. We explore this claim using the Dewey Decimal Classification (DDC) system as a case study. The DDC links its classes into a notational hierarchy, supplemented by a network of relationships between topics, expressed in class descriptions and in the Relative Index (RI). Topics/subjects are expressed both by the natural language text of the caption and notes (including Manual notes) in a class description and by the controlled vocabulary of the RI's alphabetic index, which shows where topics are treated in the classificatory structure. The expression of relationships between topics depends on paradigmatic and syntagmatic relationships between natural language terms in captions, notes, and RI terms; on the meaning of specific note types; and on references recorded between RI terms. The specific means used in the DDC for capturing hierarchical (including disciplinary), equivalence and associative relationships are surveyed.
    Date
    8.11.2015 21:27:22
  3. Green, R.: Syntagmatic relationships in index languages : a reassessment (1995) 0.02
    0.021548279 = product of:
      0.032322418 = sum of:
        0.01830817 = weight(_text_:in in 3144) [ClassicSimilarity], result of:
          0.01830817 = score(doc=3144,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2576908 = fieldWeight in 3144, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3144)
        0.014014249 = product of:
          0.028028497 = sum of:
            0.028028497 = weight(_text_:science in 3144) [ClassicSimilarity], result of:
              0.028028497 = score(doc=3144,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.20372227 = fieldWeight in 3144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3144)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Effective use of syntagmatic relationships in index languages has suffered from inaccurate or incomplete characterization in both linguistics and information science. A number of 'myths' about syntagmatic relationships are debunked: the exclusivity of paradigmatic and syntagmatic relationships, linearity as a defining characteristic of syntagmatic relationships, the restriction of syntagmatic relationships to surface linguistic units, the limitation of syntagmatic relationship benefits in document retrieval to precision, and the general irrelevance of syntagmatic relationships for document retrieval. None of the mechanisms currently used with index languages is powerful enough to achieve the levels of precision and recall that the expression of conceptual syntagmatic relationships is in theory capable of. New designs for expressing these relationships in index languages will need to take into account such characteristics as their semantic nature, systematicity, generalizability and constituent nature
  4. Green, R.: Relationships in the organization of knowledge : an overview (2001) 0.02
    0.021548279 = product of:
      0.032322418 = sum of:
        0.01830817 = weight(_text_:in in 1142) [ClassicSimilarity], result of:
          0.01830817 = score(doc=1142,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2576908 = fieldWeight in 1142, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1142)
        0.014014249 = product of:
          0.028028497 = sum of:
            0.028028497 = weight(_text_:science in 1142) [ClassicSimilarity], result of:
              0.028028497 = score(doc=1142,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.20372227 = fieldWeight in 1142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1142)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Relationships are specified by simultaneously identifying a semantic relationship and the set of participants involved in it, pairing each participant with its role in the relationship. Properties pertaining to the participant set and the nature of the relationship are explored. Relationships in the organization of knowledge are surveyed, encompassing relationships between units of recorded knowledge based an descriptions of those units; intratextual and intertextual relationships, including relationships based an text structure, citation relationships, and hypertext links; subject relationships in thesauri and other classificatory structures, including relationships for literature-based knowledge discovery; and relevance relationships.
    Series
    Information science and knowledge management; vol.2
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  5. Green, R.: Internally-structured conceptual models in cognitive semantics (2002) 0.02
    0.01873103 = product of:
      0.028096544 = sum of:
        0.01208026 = weight(_text_:in in 1193) [ClassicSimilarity], result of:
          0.01208026 = score(doc=1193,freq=4.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.17003182 = fieldWeight in 1193, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1193)
        0.016016284 = product of:
          0.032032568 = sum of:
            0.032032568 = weight(_text_:science in 1193) [ClassicSimilarity], result of:
              0.032032568 = score(doc=1193,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.23282544 = fieldWeight in 1193, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1193)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The basic conceptual units of cognitive semantics-image schemata, basic level concepts, and frames-are intemally structured, with meaningful relationships existing between components of those units. In metonymy, metaphor, and blended spaces, such intemal conceptual structure is complemented by extemal referential structure, based an mappings between elements of underlying conceptualspaces.
    Series
    Information science and knowledge management; vol.3
  6. Bean, C.A.; Green, R.: Relevance relationships (2001) 0.02
    0.017973388 = product of:
      0.02696008 = sum of:
        0.012945832 = weight(_text_:in in 1150) [ClassicSimilarity], result of:
          0.012945832 = score(doc=1150,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.1822149 = fieldWeight in 1150, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1150)
        0.014014249 = product of:
          0.028028497 = sum of:
            0.028028497 = weight(_text_:science in 1150) [ClassicSimilarity], result of:
              0.028028497 = score(doc=1150,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.20372227 = fieldWeight in 1150, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1150)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Relevance arises from relationships between user needs and documents/information. In the quest for relevant retrieval, some content-based relationships are best used initially to cast a net that emphasizes recall, while others, both content- and non-content-based, are best used subsequently as filtering devices to achieve better precision. Topical relevance, the primary factor in the initial retrieval operation, extends far beyond topic matching, as often assumed. Empirical studies demonstrate that topical relevance relationships are drawn from a broad but systematic inventory of semantic relationships.
    Series
    Information science and knowledge management; vol.2
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  7. Green, R.: Topical relevance relationships : 2: an exploratory study and preliminary typology (1995) 0.02
    0.015405759 = product of:
      0.023108639 = sum of:
        0.011096427 = weight(_text_:in in 3724) [ClassicSimilarity], result of:
          0.011096427 = score(doc=3724,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.1561842 = fieldWeight in 3724, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3724)
        0.012012213 = product of:
          0.024024425 = sum of:
            0.024024425 = weight(_text_:science in 3724) [ClassicSimilarity], result of:
              0.024024425 = score(doc=3724,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.17461908 = fieldWeight in 3724, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3724)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The assumption of topic matching between user needs and texts topically relevant to those needs is often erroneous. Reports an emprical investigantion of the question 'what relationship types actually account for topical relevance'? In order to avoid the bias to topic matching search strategies, user needs are back generated from a randomly selected subset of the subject headings employed in a user oriented topical concordance. The corresponding relevant texts are those indicated in the concordance under the subject heading. Compares the topics of the user needs with the topics of the relevant texts to determine the relationships between them. Topical relevance relationships include a large variety of relationships, only some of which are matching relationships. Others are examples of paradigmatic or syntagmatic relationships. There appear to be no constraints on the kinds of relationships that can function as topical relevance relationships. They are distinguishable from other types of relationships only on functional grounds
    Source
    Journal of the American Society for Information Science. 46(1995) no.9, S.654-662
  8. Green, R.: ¬The profession's models of information : a cognitive linguistic analysis (1991) 0.01
    0.014048271 = product of:
      0.021072406 = sum of:
        0.009060195 = weight(_text_:in in 2724) [ClassicSimilarity], result of:
          0.009060195 = score(doc=2724,freq=4.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.12752387 = fieldWeight in 2724, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2724)
        0.012012213 = product of:
          0.024024425 = sum of:
            0.024024425 = weight(_text_:science in 2724) [ClassicSimilarity], result of:
              0.024024425 = score(doc=2724,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.17461908 = fieldWeight in 2724, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2724)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study establishes 3 predominant cognitive models of information and the information transfer process manifest in the literature of library and information science, based on a linguistic analysis of phrases incoporating the word 'information' from a random sample of abstracts in the LISA database. The direct communication (DC) and indirect communication (IC) models (drawn from Reddy's frameworks of metalinguistic usage) adopt the perspective of the information system; the information-seeking (IS) model takes the viewpoint of the information user. 2 disturbing findings are presented: 1. core elements of the DC and IC models are more weakly supported by the data than are most of the peripheral elements; and 2. even though the IS model presents the information user's perspective, the data emphasise the role of the information system. These findings suggest respectively that the field lacks a coherent model of information transfer per se and that our model of information retrieval is mechanistic, oblivious to the cognitive models of end users
  9. Green, R.: Topical relevance relationships : 1: why topic matching fails (1995) 0.01
    0.014048271 = product of:
      0.021072406 = sum of:
        0.009060195 = weight(_text_:in in 3722) [ClassicSimilarity], result of:
          0.009060195 = score(doc=3722,freq=4.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.12752387 = fieldWeight in 3722, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3722)
        0.012012213 = product of:
          0.024024425 = sum of:
            0.024024425 = weight(_text_:science in 3722) [ClassicSimilarity], result of:
              0.024024425 = score(doc=3722,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.17461908 = fieldWeight in 3722, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3722)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Presents conceptual background. Since topicality is a major factor in relevance, it is crucial to identify the range of relationship types that occur between the topics of user needs and the topics of texts relevant to those needs. Assumes that a single relationship type obtains i.e. that the 2 topics match. Evidence from the analysis of recall failures, citation analysis, and knowledge synthesis suggests otherwise: topical relevance relationships are not limited to topic matching relationships; to the contrary, in certain circumstances they are quite likely not to be matching relationships. Relationships are 1 of the 2 fundamental components of human conceptual systems. Attempts to classify them usually accept a distinction between relationships that occur by virute of the combination of component units (syntagmatic relationships) and relationships that are bulit into the language system (paradigmatic relationships). Given the variety of relationship types previously identified, empirical research is needed to determine the subset that actually account for topical relevance
    Source
    Journal of the American Society for Information Science. 46(1995) no.9, S.646-653
  10. Green, R.; Bean, C.A.; Hudon, M.: Universality and basic level concepts (2003) 0.01
    0.012313303 = product of:
      0.018469954 = sum of:
        0.010461812 = weight(_text_:in in 2730) [ClassicSimilarity], result of:
          0.010461812 = score(doc=2730,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.14725187 = fieldWeight in 2730, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2730)
        0.008008142 = product of:
          0.016016284 = sum of:
            0.016016284 = weight(_text_:science in 2730) [ClassicSimilarity], result of:
              0.016016284 = score(doc=2730,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.11641272 = fieldWeight in 2730, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2730)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper examines whether a concept's hierarchical level affects the likelihood of its universality across schemes for knowledge representation and knowledge organization. Empirical data an equivalents are drawn from a bilingual thesaurus, a pair of biomedical vocabularies, and two ontologies. Conceptual equivalence across resources occurs significantly more often at the basic level than at subordinate or superordinate levels. Attempts to integrate knowledge representation or knowledge organization tools should concentrate an establishing equivalences at the basic level. 1. Rationale The degree of success attainable in the integration of multiple knowledge representation systems or knowledge organization schemes is constrained by limitations an the universality of human conceptual systems. For example, human languages do not all lexicalize the same set of concepts; nor do they structure (quasi-)equivalent concepts in the same relational patterns (Riesthuis, 2001). As a consequence, even multilingual thesauri designed from the outset from the perspective of multiple languages may routinely include situations where corresponding terms are not truly equivalent (Hudon, 1997, 2001). Intuitively, where inexactness and partialness in equivalence mappings across knowledge representation schemes and knowledge organizations schemes exist, a more difficult retrieval scenario arises than where equivalence mappings reflect full and exact conceptual matches. The question we address in this paper is whether a concept's hierarchical level af ects the likelihood of its universality/full equivalence across schemes for knowledge representation and knowledge organization. Cognitive science research has shown that one particular hierarchical level-called the basic level--enjoys a privileged status (Brown, 1958; Rosch et al., 1976). Our underlying hypothesis is that concepts at the basic level (e.g., apple, shoe, chair) are more likely to match across knowledge representation schemes and knowledge organization schemes than concepts at the superordinate (e.g., fruit, footwear, furniture) or subordinate (e.g., Granny Smith, sneaker, recliner) levels. This hypothesis is consistent with ethnobiological data showing that folk classifications of flora are more likely to agree at the basic level than at superordinate or subordinate levels (Berlin, 1992).
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  11. Green, R.: Automated identification of frame semantic relational structures (2000) 0.01
    0.0074742786 = product of:
      0.022422835 = sum of:
        0.022422835 = weight(_text_:in in 110) [ClassicSimilarity], result of:
          0.022422835 = score(doc=110,freq=18.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.31560543 = fieldWeight in 110, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=110)
      0.33333334 = coord(1/3)
    
    Abstract
    Preliminary attempts to identify semantic frames and their internal structure automatically have met with a degree of success. In a first stage, clustering is used to detect 4 previously identified semantic frames (COMMERCIAL TRANSACTION, HIT, JUDGING, RISK) from verb definitions in Longman's Dictionary of Contemporary English. In a second stage, nouns used in the definitions of frame-invoking verbs or in whose definitions the frame-invoking verbs occur in certain forms are searched in WordNet to identify frame elements. Suggestions for refinement of the processes are discussed
    Series
    Advances in knowledge organization; vol.7
    Source
    Dynamism and stability in knowledge organization: Proceedings of the 6th International ISKO-Conference, 10-13 July 2000, Toronto, Canada. Ed.: C. Beghtol et al
  12. Green, R.: Making visible hidden relationships in the Dewey Decimal Classification : how relative index terms relate to DDC classes (2008) 0.01
    0.0065916954 = product of:
      0.019775085 = sum of:
        0.019775085 = weight(_text_:in in 2236) [ClassicSimilarity], result of:
          0.019775085 = score(doc=2236,freq=14.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.27833787 = fieldWeight in 2236, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2236)
      0.33333334 = coord(1/3)
    
    Content
    Relative Index (RI) terms in the Dewey Decimal Classification (DDC) system correspond to concepts that either approximate the whole of the class they index or that are in standing room there. DDC conventions and shallow natural language processing are used to determine automatically whether specific RI terms approximate the whole of or are in standing room in the classes they index. Approximately three-quarters of all RI terms are processed by the techniques described.
    Series
    Advances in knowledge organization; vol.11
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  13. Green, R.; Panzer, M.: ¬The ontological character of classes in the Dewey Decimal Classification 0.01
    0.0061027235 = product of:
      0.01830817 = sum of:
        0.01830817 = weight(_text_:in in 3530) [ClassicSimilarity], result of:
          0.01830817 = score(doc=3530,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2576908 = fieldWeight in 3530, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3530)
      0.33333334 = coord(1/3)
    
    Abstract
    Classes in the Dewey Decimal Classification (DDC) system function as neighborhoods around focal topics in captions and notes. Topical neighborhoods are generated through specialization and instantiation, complex topic synthesis, index terms and mapped headings, hierarchical force, rules for choosing between numbers, development of the DDC over time, and use of the system in classifying resources. Implications of representation using a formal knowledge representation language are explored.
    Series
    Advances in knowledge organization; vol.12
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  14. Green, R.; Panzer, M.: Relations in the notational hierarchy of the Dewey Decimal Classification (2011) 0.01
    0.005627559 = product of:
      0.016882677 = sum of:
        0.016882677 = weight(_text_:in in 4823) [ClassicSimilarity], result of:
          0.016882677 = score(doc=4823,freq=20.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2376267 = fieldWeight in 4823, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4823)
      0.33333334 = coord(1/3)
    
    Abstract
    As part of a larger assessment of relationships in the Dewey Decimal Classification (DDC) system, this study investigates the semantic nature of relationships in the DDC notational hierarchy. The semantic relationship between each of a set of randomly selected classes and its parent class in the notational hierarchy is examined against a set of relationship types (specialization, class-instance, several flavours of whole-part).The analysis addresses the prevalence of specific relationship types, their lexical expression, difficulties encountered in assigning relationship types, compatibility of relationships found in the DDC with those found in other knowledge organization systems (KOS), and compatibility of relationships found in the DDC with those in a shared formalism like the Web Ontology Language (OWL). Since notational hierarchy is an organizational mechanism shared across most classification schemes and is often considered to provide an easy solution for ontological transformation of a classification system, the findings of the study are likely to generalize across classification schemes with respect to difficulties that might be encountered in such a transformation process.
  15. Green, R.: Description in the electronic environment (1996) 0.01
    0.0055709993 = product of:
      0.016712997 = sum of:
        0.016712997 = weight(_text_:in in 3685) [ClassicSimilarity], result of:
          0.016712997 = score(doc=3685,freq=10.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.23523843 = fieldWeight in 3685, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3685)
      0.33333334 = coord(1/3)
    
    Abstract
    The significant differences that exist between the print and digital worlds are sometimes felt to diminish the need for bibliographic description in the electronic world. An analysis of these differences, especially with respect to (1) the control of production and distribution of documents and (2) the need for software intermediation, coupled with a discussion of the functions of bibliographic description in the task of document retrieval argue, however, for an increased role for bibliographic description in the electronic world
    Series
    Advances in knowledge organization; vol.5
  16. Green, R.: See-also relationships in the Dewey Decimal Classification (2011) 0.01
    0.0055709993 = product of:
      0.016712997 = sum of:
        0.016712997 = weight(_text_:in in 4615) [ClassicSimilarity], result of:
          0.016712997 = score(doc=4615,freq=10.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.23523843 = fieldWeight in 4615, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4615)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper investigates the semantics of topical, associative see-also relationships in schedule and table entries of the Dewey Decimal Classification (DDC) system. Based on the see-also relationships in a random sample of 100 classes containing one or more of these relationships, a semi-structured inventory of sources of see-also relationships is generated, of which the most important are lexical similarity, complementarity, facet difference, and relational configuration difference. The premise that see-also relationships based on lexical similarity may be language-specific is briefly examined. The paper concludes with recommendations on the continued use of see-also relationships in the DDC.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  17. Green, R.: Indigenous Peoples in the U.S., sovereign nations, and the DDC (2015) 0.01
    0.0052309064 = product of:
      0.015692718 = sum of:
        0.015692718 = weight(_text_:in in 2201) [ClassicSimilarity], result of:
          0.015692718 = score(doc=2201,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.22087781 = fieldWeight in 2201, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2201)
      0.33333334 = coord(1/3)
    
    Abstract
    Claims of bias within the Dewey Decimal Classification (DDC) system in its treatment of indigenous peoples in the U.S. focus on marginalization through ghettoization, historicization, diasporization, and missing topics, such as the status of indigenous peoples as sovereign nations. Investigation into the treatment of indigenous peoples in the U.S. from DDC 16 to DDC 23 reveals that two of the most central concerns, ghettoization and historicization, are not borne out. Diasporization turns out to be a legitimate, but resolvable, concern. The current failure to recognize indigenous peoples as sovereign nations leads to a proposal for a series of expansions in Table 2 for the geographic areas over which indigenous peoples are sovereign; a mismatch between organization by the DDC and by indigenous peoples in the U.S. leads to the supplying of a Manual note table going from names of tribes (a Table 5 concept) to sovereign nations (a Table 2 concept).
  18. Green, R.: ¬The expression of syntagmatic relationships in indexing : are frame-based index languages the answer? (1992) 0.00
    0.0049317456 = product of:
      0.014795236 = sum of:
        0.014795236 = weight(_text_:in in 2093) [ClassicSimilarity], result of:
          0.014795236 = score(doc=2093,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2082456 = fieldWeight in 2093, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2093)
      0.33333334 = coord(1/3)
    
    Abstract
    The frame structure matches the profile of features desirable in a syntagmatic relationship system and should be incorporated as the basic structural unit in index languages. The construction of frame-based index languages is discussed. Selected findings based on the case study analysis of implementing a New Testament-oriented frame-based indexing language are presented
  19. Green, R.: Attribution and relationality (1998) 0.00
    0.0049317456 = product of:
      0.014795236 = sum of:
        0.014795236 = weight(_text_:in in 6425) [ClassicSimilarity], result of:
          0.014795236 = score(doc=6425,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2082456 = fieldWeight in 6425, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=6425)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper examines the role of attributes within entity-relationship-based conceptual modeling, investigating the interplay between attributes and relationships within (1) data modeling and (2) natural language use. Attribution is found to be an important relationship type. The lack of distinctiveness between attributes and relationships leads to a re-examination of how hierarchy should be treated in both the practice and theory of knowledge organization
    Series
    Advances in knowledge organization; vol.6
    Source
    Structures and relations in knowledge organization: Proceedings of the 5th International ISKO-Conference, Lille, 25.-29.8.1998. Ed.: W. Mustafa el Hadi et al
  20. Green, R.; Fraser, L.: Patterns in verbal polysemy (2004) 0.00
    0.0049317456 = product of:
      0.014795236 = sum of:
        0.014795236 = weight(_text_:in in 2621) [ClassicSimilarity], result of:
          0.014795236 = score(doc=2621,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2082456 = fieldWeight in 2621, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2621)
      0.33333334 = coord(1/3)
    
    Abstract
    Although less well studied than noun polysemy, verb polysemy affects both natural language and controlled vocabulary searching. This paper reports the preliminary conclusions of an empirical investigation of the semantic relationships between ca. 600 verb sense pairs in English, illustrating six classes of semantic relationships that account for a significant proportion of verbal polysemy.
    Series
    Advances in knowledge organization; vol.9