Search (101 results, page 1 of 6)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.06
    0.06285151 = product of:
      0.09427726 = sum of:
        0.016712997 = weight(_text_:in in 1149) [ClassicSimilarity], result of:
          0.016712997 = score(doc=1149,freq=10.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.23523843 = fieldWeight in 1149, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1149)
        0.07756427 = sum of:
          0.028028497 = weight(_text_:science in 1149) [ClassicSimilarity], result of:
            0.028028497 = score(doc=1149,freq=2.0), product of:
              0.1375819 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.052230705 = queryNorm
              0.20372227 = fieldWeight in 1149, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1149)
          0.049535774 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
            0.049535774 = score(doc=1149,freq=2.0), product of:
              0.18290302 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052230705 = queryNorm
              0.2708308 = fieldWeight in 1149, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1149)
      0.6666667 = coord(2/3)
    
    Abstract
    A thesaurus in the controlled vocabulary environment is a tool designed to support effective infonnation retrieval (IR) by guiding indexers and searchers consistently to choose the same terms for expressing a given concept or combination of concepts. Terms in the thesaurus are linked by relationships of three well-known types: equivalence, hierarchical, and associative. The functions and properties of these three basic types and some subcategories are described, as well as some additional relationship types conunonly found in thesauri. Progressive automation of IR processes and the capability for simultaneous searching of vast networked resources are creating some pressures for change in the categorization and consistency of relationships.
    Date
    22. 9.2007 15:45:57
    Series
    Information science and knowledge management; vol.2
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  2. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.05
    0.051709514 = product of:
      0.15512854 = sum of:
        0.15512854 = sum of:
          0.056056995 = weight(_text_:science in 4506) [ClassicSimilarity], result of:
            0.056056995 = score(doc=4506,freq=2.0), product of:
              0.1375819 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.052230705 = queryNorm
              0.40744454 = fieldWeight in 4506, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.109375 = fieldNorm(doc=4506)
          0.09907155 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
            0.09907155 = score(doc=4506,freq=2.0), product of:
              0.18290302 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052230705 = queryNorm
              0.5416616 = fieldWeight in 4506, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=4506)
      0.33333334 = coord(1/3)
    
    Date
    8.10.2000 11:52:22
    Source
    Library science with a slant to documentation. 28(1991) no.4, S.125-130
  3. Mikacic, M.: Statistical system for subject designation (SSSD) for libraries in Croatia (1996) 0.04
    0.036550794 = product of:
      0.05482619 = sum of:
        0.014795236 = weight(_text_:in in 2943) [ClassicSimilarity], result of:
          0.014795236 = score(doc=2943,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2082456 = fieldWeight in 2943, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=2943)
        0.040030953 = product of:
          0.080061905 = sum of:
            0.080061905 = weight(_text_:22 in 2943) [ClassicSimilarity], result of:
              0.080061905 = score(doc=2943,freq=4.0), product of:
                0.18290302 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052230705 = queryNorm
                0.4377287 = fieldWeight in 2943, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2943)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Describes the developments of the Statistical System for Subject Designation (SSSD): a syntactical system for subject designation for libraries in Croatia, based on the construction of subject headings in agreement with the theory of the sentence nature of subject headings. The discussion is preceded by a brief summary of theories underlying basic principles and fundamental rules of the alphabetical subject catalogue
    Date
    31. 7.2006 14:22:21
    Source
    Cataloging and classification quarterly. 22(1996) no.1, S.77-93
  4. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.03
    0.033733338 = product of:
      0.050600007 = sum of:
        0.011817873 = weight(_text_:in in 3644) [ClassicSimilarity], result of:
          0.011817873 = score(doc=3644,freq=20.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.16633868 = fieldWeight in 3644, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3644)
        0.038782135 = sum of:
          0.014014249 = weight(_text_:science in 3644) [ClassicSimilarity], result of:
            0.014014249 = score(doc=3644,freq=2.0), product of:
              0.1375819 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.052230705 = queryNorm
              0.101861134 = fieldWeight in 3644, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
          0.024767887 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
            0.024767887 = score(doc=3644,freq=2.0), product of:
              0.18290302 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052230705 = queryNorm
              0.1354154 = fieldWeight in 3644, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
      0.6666667 = coord(2/3)
    
    Abstract
    Calvin Mooers' work toward the resolution of the problem of ambiguity in indexing went unrecognized for years. At the time he introduced the "descriptor" - a term with a very distinct meaning-indexers were, for the most part, taking index terms directly from the document, without either rationalizing them with context or normalizing them with some kind of classification. It is ironic that Mooers' term came to be attached to the popular but unsophisticated indexing methods which he was trying to root out. Simply expressed, what Mooers did was to take the dictionary definitions of terms and redefine them so clearly that they could not be used in any context except that provided by the new definition. He did, at great pains, construct such meanings for over four hundred words; disambiguation and specificity were sought after and found for these words. He proposed that all indexers adopt this method so that when the index supplied a term, it also supplied the exact meaning for that term as used in the indexed document. The same term used differently in another document would be defined differently and possibly renamed to avoid ambiguity. The disambiguation was achieved by using unabridged dictionaries and other sources of defining terminology. In practice, this tends to produce circularity in definition, that is, word A refers to word B which refers to word C which refers to word A. It was necessary, therefore, to break this chain by creating a new, definitive meaning for each word. Eventually, means such as those used by Austin (q.v.) for PRECIS achieved the same purpose, but by much more complex means than just creating a unique definition of each term. Mooers, however, was probably the first to realize how confusing undefined terminology could be. Early automatic indexers dealt with distinct disciplines and, as long as they did not stray beyond disciplinary boundaries, a quick and dirty keyword approach was satisfactory. The trouble came when attempts were made to make a combined index for two or more distinct disciplines. A number of processes have since been developed, mostly involving tagging of some kind or use of strings. Mooers' solution has rarely been considered seriously and probably would be extremely difficult to apply now because of so much interdisciplinarity. But for a specific, weIl defined field, it is still weIl worth considering. Mooers received training in mathematics and physics from the University of Minnesota and the Massachusetts Institute of Technology. He was the founder of Zator Company, which developed and marketed a coded card information retrieval system, and of Rockford Research, Inc., which engages in research in information science. He is the inventor of the TRAC computer language.
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.
  5. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.03
    0.026477631 = product of:
      0.039716445 = sum of:
        0.014948557 = weight(_text_:in in 4792) [ClassicSimilarity], result of:
          0.014948557 = score(doc=4792,freq=8.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.21040362 = fieldWeight in 4792, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4792)
        0.024767887 = product of:
          0.049535774 = sum of:
            0.049535774 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.049535774 = score(doc=4792,freq=2.0), product of:
                0.18290302 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052230705 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. In Form einer Taxonomie wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, die eine detaillierte und damit aussagekräftige Relationierung des Vokabulars ermöglichen. Das bringt einen Zugewinn an Übersichtlichkeit und Funktionalität. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines bestehenden Gegenstandsbereichs heraus.
    Series
    Fortschritte in der Wissensorganisation; Bd.11
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  6. Degez, D.: Compatibilité des langages d'indexation mariage, cohabitation ou fusion? : Quelques examples concrèts (1998) 0.03
    0.02514248 = product of:
      0.037713718 = sum of:
        0.012945832 = weight(_text_:in in 2245) [ClassicSimilarity], result of:
          0.012945832 = score(doc=2245,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.1822149 = fieldWeight in 2245, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2245)
        0.024767887 = product of:
          0.049535774 = sum of:
            0.049535774 = weight(_text_:22 in 2245) [ClassicSimilarity], result of:
              0.049535774 = score(doc=2245,freq=2.0), product of:
                0.18290302 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052230705 = queryNorm
                0.2708308 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2245)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    To illustrate the theoretical analysis presented by J. Maniez published in Documentaliste 34(1997) nos.4/5 presents some concrete examples drawn for experience of the difficulties increasingly faced in trying to make different indexing languages compatible. Various types of problems may be considered: comparing semantic terms and relationships that compose indexing languages, setting standards for writing and vocabulary, and opposing pre and post coordinated descriptors. Proposes several solutions and discusses the need for further applied research in this area
    Date
    1. 8.1996 22:01:00
  7. Green, R.: Syntagmatic relationships in index languages : a reassessment (1995) 0.02
    0.021548279 = product of:
      0.032322418 = sum of:
        0.01830817 = weight(_text_:in in 3144) [ClassicSimilarity], result of:
          0.01830817 = score(doc=3144,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2576908 = fieldWeight in 3144, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3144)
        0.014014249 = product of:
          0.028028497 = sum of:
            0.028028497 = weight(_text_:science in 3144) [ClassicSimilarity], result of:
              0.028028497 = score(doc=3144,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.20372227 = fieldWeight in 3144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3144)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Effective use of syntagmatic relationships in index languages has suffered from inaccurate or incomplete characterization in both linguistics and information science. A number of 'myths' about syntagmatic relationships are debunked: the exclusivity of paradigmatic and syntagmatic relationships, linearity as a defining characteristic of syntagmatic relationships, the restriction of syntagmatic relationships to surface linguistic units, the limitation of syntagmatic relationship benefits in document retrieval to precision, and the general irrelevance of syntagmatic relationships for document retrieval. None of the mechanisms currently used with index languages is powerful enough to achieve the levels of precision and recall that the expression of conceptual syntagmatic relationships is in theory capable of. New designs for expressing these relationships in index languages will need to take into account such characteristics as their semantic nature, systematicity, generalizability and constituent nature
  8. Green, R.: Relationships in the organization of knowledge : an overview (2001) 0.02
    0.021548279 = product of:
      0.032322418 = sum of:
        0.01830817 = weight(_text_:in in 1142) [ClassicSimilarity], result of:
          0.01830817 = score(doc=1142,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2576908 = fieldWeight in 1142, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1142)
        0.014014249 = product of:
          0.028028497 = sum of:
            0.028028497 = weight(_text_:science in 1142) [ClassicSimilarity], result of:
              0.028028497 = score(doc=1142,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.20372227 = fieldWeight in 1142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1142)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Relationships are specified by simultaneously identifying a semantic relationship and the set of participants involved in it, pairing each participant with its role in the relationship. Properties pertaining to the participant set and the nature of the relationship are explored. Relationships in the organization of knowledge are surveyed, encompassing relationships between units of recorded knowledge based an descriptions of those units; intratextual and intertextual relationships, including relationships based an text structure, citation relationships, and hypertext links; subject relationships in thesauri and other classificatory structures, including relationships for literature-based knowledge discovery; and relevance relationships.
    Series
    Information science and knowledge management; vol.2
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  9. Fugmann, R.: Unusual possibilities in indexing and classification (1990) 0.02
    0.020541014 = product of:
      0.03081152 = sum of:
        0.014795236 = weight(_text_:in in 4781) [ClassicSimilarity], result of:
          0.014795236 = score(doc=4781,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2082456 = fieldWeight in 4781, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4781)
        0.016016284 = product of:
          0.032032568 = sum of:
            0.032032568 = weight(_text_:science in 4781) [ClassicSimilarity], result of:
              0.032032568 = score(doc=4781,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.23282544 = fieldWeight in 4781, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4781)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Contemporary research in information science has concentrated on the development of methods for the algorithmic processing of natural language texts. Often, the equivalence of this approach to the intellectual technique of content analysis and indexing is claimed. It is, however, disregarded that contemporary intellectual techniques are far from exploiting their full capabilities. This is largely due to the omission of vocabulary categorisation. It is demonstrated how categorisation can drastically improve the quality of indexing and classification, and, hence, of retrieval
    Series
    Advances in knowledge organization; vol.1
  10. Svenonius, E.: Unanswered questions in the design of controlled vocabularies (1986) 0.02
    0.020541014 = product of:
      0.03081152 = sum of:
        0.014795236 = weight(_text_:in in 584) [ClassicSimilarity], result of:
          0.014795236 = score(doc=584,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2082456 = fieldWeight in 584, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=584)
        0.016016284 = product of:
          0.032032568 = sum of:
            0.032032568 = weight(_text_:science in 584) [ClassicSimilarity], result of:
              0.032032568 = score(doc=584,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.23282544 = fieldWeight in 584, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=584)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The issue of free-text versus controlled vocabulary is examined in this article. The history of the issue, which is seen as beginning with the debate over title term indexing in the last century, is reviewed and the attention is turned to questions which have not been satisfactorily addressed by previous research. The point is made that these questions need to be answered if we are to design retrieval tools, such as thesauri, upon a national basis
    Source
    Journal of the American Society for Information Science. 37(1986) no.5, S.331-340
  11. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.02
    0.020049468 = product of:
      0.030074202 = sum of:
        0.0153623065 = weight(_text_:in in 1978) [ClassicSimilarity], result of:
          0.0153623065 = score(doc=1978,freq=46.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.21622722 = fieldWeight in 1978, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.014711896 = product of:
          0.029423792 = sum of:
            0.029423792 = weight(_text_:science in 1978) [ClassicSimilarity], result of:
              0.029423792 = score(doc=1978,freq=12.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.21386383 = fieldWeight in 1978, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1978)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
    Source
    Annual review of information science and technology. 40(2006), S.157-228
  12. Relationships in the organization of knowledge (2001) 0.02
    0.019990686 = product of:
      0.02998603 = sum of:
        0.019975852 = weight(_text_:in in 1139) [ClassicSimilarity], result of:
          0.019975852 = score(doc=1139,freq=28.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.2811637 = fieldWeight in 1139, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1139)
        0.010010177 = product of:
          0.020020355 = sum of:
            0.020020355 = weight(_text_:science in 1139) [ClassicSimilarity], result of:
              0.020020355 = score(doc=1139,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.1455159 = fieldWeight in 1139, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1139)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With fourteen contributions grouped in two sections, "Theoretical background" and "Systems", this work discusses the most common relationships used in the organization of recorded knowledge to facilitate information retrieval: the relationships between bibliographic entities, intra- and intertextual relationships, relevance relationships, and subject relationships in thesauri and other classificatory structures. The editors' goal is to "spur further interest, debate, research, and development".
    Content
    Enthält u.a. die Beiträge: GREEN, R.: Relationships in the organization of knowledge: an overview; TILLETT, B.: Bibliographic relationships; CLARKE, S.G.D.: Thesaural relationships; MILSTEAD, J.L.: Standards for relationships between subject indexing terms; HUDON, M.: Relationships in multilingual thesauri; BODENREIDER, O. u. C.A. BEAN: Relationships among knowledge structures: vocabulary integration within a subject domain; BEGHTOL, C.: Relationships in classificatory structure and meaning; BEAN, C.A. u. R. GREEN: Relevance relationships; EL-HOSHY, L.M.: Relationships in Library of Congress Subject Headings; MOLHOLT, P.: The Art and Architecture Thesaurus: controlling relationships through rules and structure; NELSON, S.J. u.a.: Relationships in Medical Subject Headings (MeSH); NEELAMEGHAN, A.: Lateral relationships in multicultural, mulrilingual databases in the spiritual and religous domains: the OM information service; SATIJA, M.P.: Relationships in Ranganathan's Colon classification; MITCHELL, J.S.: Relationships in the Dewey Decimal Classification System
    Footnote
    Rez. in: Knowledge organization 28(2001) no.4, S.208-210 (S. Betrand-Gastaldy)
    Series
    Information science and knowledge management; vol.2
  13. Engerer, V.: Control and syntagmatization : vocabulary requirements in information retrieval thesauri and natural language lexicons (2017) 0.02
    0.01930819 = product of:
      0.028962284 = sum of:
        0.016950073 = weight(_text_:in in 3678) [ClassicSimilarity], result of:
          0.016950073 = score(doc=3678,freq=14.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.23857531 = fieldWeight in 3678, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
        0.012012213 = product of:
          0.024024425 = sum of:
            0.024024425 = weight(_text_:science in 3678) [ClassicSimilarity], result of:
              0.024024425 = score(doc=3678,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.17461908 = fieldWeight in 3678, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3678)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper explores the relationships between natural language lexicons in lexical semantics and thesauri in information retrieval research. These different areas of knowledge have different restrictions on use of vocabulary; thesauri are used only in information search and retrieval contexts, whereas lexicons are mental systems and generally applicable in all domains of life. A set of vocabulary requirements that defines the more concrete characteristics of vocabulary items in the 2 contexts can be derived from this framework: lexicon items have to be learnable, complex, transparent, etc., whereas thesaurus terms must be effective, current and relevant, searchable, etc. The differences in vocabulary properties correlate with 2 other factors, the well-known dimension of Control (deliberate, social activities of building and maintaining vocabularies), and Syntagmatization, which is less known and describes vocabulary items' varying formal preparedness to exit the thesaurus/lexicon, enter into linear syntactic constructions, and, finally, acquire communicative functionality. It is proposed that there is an inverse relationship between Control and Syntagmatization.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.6, S.1480-1490
  14. Bodenreider, O.; Bean, C.A.: Relationships among knowledge structures : vocabulary integration within a subject domain (2001) 0.02
    0.01873103 = product of:
      0.028096544 = sum of:
        0.01208026 = weight(_text_:in in 1145) [ClassicSimilarity], result of:
          0.01208026 = score(doc=1145,freq=4.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.17003182 = fieldWeight in 1145, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1145)
        0.016016284 = product of:
          0.032032568 = sum of:
            0.032032568 = weight(_text_:science in 1145) [ClassicSimilarity], result of:
              0.032032568 = score(doc=1145,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.23282544 = fieldWeight in 1145, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1145)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The structure of terminology systems can be seen as one way to organize knowledge. This paper focuses an three types of relationships among terms: synonymy, hierarchical relationships, and explicit mapping relationships. Examples drawn from various medical vocabularies illustrate each type of relationship. The integration of disparate terminological knowledge structures in the Unified Medical Language System is presented and discussed.
    Series
    Information science and knowledge management; vol.2
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  15. Fugmann, R.: ¬The analytico-synthetic foundation for large indexing & information retrieval systems : dedicated to Prof. Dr. Werner Schultheis, the vigorous initiator of modern chem. documentation in Germany on the occasion of his 85th birthday (1983) 0.02
    0.01873103 = product of:
      0.028096544 = sum of:
        0.01208026 = weight(_text_:in in 215) [ClassicSimilarity], result of:
          0.01208026 = score(doc=215,freq=4.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.17003182 = fieldWeight in 215, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=215)
        0.016016284 = product of:
          0.032032568 = sum of:
            0.032032568 = weight(_text_:science in 215) [ClassicSimilarity], result of:
              0.032032568 = score(doc=215,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.23282544 = fieldWeight in 215, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=215)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Rez. in: International classification 12(1985) S.106 (L. Kalok)
    Series
    Sarada Ranganathan Lectures; 14)(Sarada Ranganathan Endowment for Library Science series ; 16
  16. Maniez, J.: Fusion de banques de donnees documentaires at compatibilite des languages d'indexation (1997) 0.02
    0.018424096 = product of:
      0.027636142 = sum of:
        0.0064065247 = weight(_text_:in in 2246) [ClassicSimilarity], result of:
          0.0064065247 = score(doc=2246,freq=2.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.09017298 = fieldWeight in 2246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2246)
        0.021229617 = product of:
          0.042459235 = sum of:
            0.042459235 = weight(_text_:22 in 2246) [ClassicSimilarity], result of:
              0.042459235 = score(doc=2246,freq=2.0), product of:
                0.18290302 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052230705 = queryNorm
                0.23214069 = fieldWeight in 2246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2246)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Discusses the apparently unattainable goal of compatibility of information languages. While controlled languages can improve retrieval performance within a single system, they make cooperation across different systems more difficult. The Internet and downloading accentuate this adverse outcome and the acceleration of data exchange aggravates the problem of compatibility. Defines this familiar concept and demonstrates that coherence is just as necessary as it was for indexing languages, the proliferation of which has created confusion in grouped data banks. Describes 2 types of potential solutions, similar to those applied to automatic translation of natural languages: - harmonizing the information languages themselves, both difficult and expensive, or, the more flexible solution involving automatic harmonization of indexing formulae based on pre established concordance tables. However, structural incompatibilities between post coordinated languages and classifications may lead any harmonization tools up a blind alley, while the paths of a universal concordance model are rare and narrow
    Date
    1. 8.1996 22:01:00
  17. Hjoerland, B.: Semantics and knowledge organization (2007) 0.02
    0.018155862 = product of:
      0.027233792 = sum of:
        0.013077264 = weight(_text_:in in 1980) [ClassicSimilarity], result of:
          0.013077264 = score(doc=1980,freq=12.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.18406484 = fieldWeight in 1980, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
        0.014156529 = product of:
          0.028313057 = sum of:
            0.028313057 = weight(_text_:science in 1980) [ClassicSimilarity], result of:
              0.028313057 = score(doc=1980,freq=4.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.20579056 = fieldWeight in 1980, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1980)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The aim of this chapter is to demonstrate that semantic issues underlie all research questions within Library and Information Science (LIS, or, as hereafter, IS) and, in particular, the subfield known as Knowledge Organization (KO). Further, it seeks to show that semantics is a field influenced by conflicting views and discusses why it is important to argue for the most fruitful one of these. Moreover, the chapter demonstrates that IS has not yet addressed semantic problems in systematic fashion and examines why the field is very fragmented and without a proper theoretical basis. The focus here is on broad interdisciplinary issues and the long-term perspective. The theoretical problems involving semantics and concepts are very complicated. Therefore, this chapter starts by considering tools developed in KO for information retrieval (IR) as basically semantic tools. In this way, it establishes a specific IS focus on the relation between KO and semantics. It is well known that thesauri consist of a selection of concepts supplemented with information about their semantic relations (such as generic relations or "associative relations"). Some words in thesauri are "preferred terms" (descriptors), whereas others are "lead-in terms." The descriptors represent concepts. The difference between "a word" and "a concept" is that different words may have the same meaning and similar words may have different meanings, whereas one concept expresses one meaning.
    Source
    Annual review of information science and technology. 41(2007), S.367-405
  18. Szostak, R.: Classifying relationships (2012) 0.02
    0.017973388 = product of:
      0.02696008 = sum of:
        0.012945832 = weight(_text_:in in 1923) [ClassicSimilarity], result of:
          0.012945832 = score(doc=1923,freq=6.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.1822149 = fieldWeight in 1923, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1923)
        0.014014249 = product of:
          0.028028497 = sum of:
            0.028028497 = weight(_text_:science in 1923) [ClassicSimilarity], result of:
              0.028028497 = score(doc=1923,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.20372227 = fieldWeight in 1923, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1923)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper develops a classification of relationships among things, with many potential uses within information science. Unlike previous classifications of relationships, it is hoped that this classification will provide benefits that exceed the costs of application. The major theoretical innovation is to stress the importance of causal relationships, albeit not exclusively. The paper also stresses the advantages of using compounds of simpler terms: verbs compounded with other verbs, adverbs, or things. The classification builds upon a review of the previous literature and a broad inductive survey of potential sources in a recent article in this journal. The result is a classification that is both manageable in size and easy to apply and yet encompasses all of the relationships necessary for classifying documents or even ideas.
  19. Neelameghan, A.: Lateral relationships in multicultural, multilingual databases in the spiritual and religious domains : the OM Information service (2001) 0.02
    0.017558426 = product of:
      0.026337638 = sum of:
        0.014325427 = weight(_text_:in in 1146) [ClassicSimilarity], result of:
          0.014325427 = score(doc=1146,freq=10.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.20163295 = fieldWeight in 1146, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1146)
        0.012012213 = product of:
          0.024024425 = sum of:
            0.024024425 = weight(_text_:science in 1146) [ClassicSimilarity], result of:
              0.024024425 = score(doc=1146,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.17461908 = fieldWeight in 1146, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1146)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Mapping a multidimensional universe of subjects for linear representation, such as in class number, subject heading, and faset structure is problematic. Into this context is recalled the near-seminal and postulational approach suggested by S. R Ranganathan. The non-hierarchical associative relationship or lateral relationship (LR) is distinguished at different levels-among information sources, databases, records of databases, and among concepts (LR-0). Over thirty lateral relationships at the concept level (LR-0) are identified and enumerated with examples from spiritual and religious texts. Special issues relating to LR-0 in multicultural, multilingual databases intended to be used globally by peoples of different cultures and faith are discussed, using as example the multimedia OM Information Service. Vocabulary assistance for users is described.
    Series
    Information science and knowledge management; vol.2
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  20. Khoo, C.; Chan, S.; Niu, Y.: ¬The many facets of the cause-effect relation (2002) 0.02
    0.017558426 = product of:
      0.026337638 = sum of:
        0.014325427 = weight(_text_:in in 1192) [ClassicSimilarity], result of:
          0.014325427 = score(doc=1192,freq=10.0), product of:
            0.07104705 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.052230705 = queryNorm
            0.20163295 = fieldWeight in 1192, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1192)
        0.012012213 = product of:
          0.024024425 = sum of:
            0.024024425 = weight(_text_:science in 1192) [ClassicSimilarity], result of:
              0.024024425 = score(doc=1192,freq=2.0), product of:
                0.1375819 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.052230705 = queryNorm
                0.17461908 = fieldWeight in 1192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1192)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This chapter presents a broad survey of the cause-effect relation, with particular emphasis an how the relation is expressed in text. Philosophers have been grappling with the concept of causation for centuries. Researchers in social psychology have found that the human mind has a very complex mechanism for identifying and attributing the cause for an event. Inferring cause-effect relations between events and statements has also been found to be an important part of reading and text comprehension, especially for narrative text. Though many of the cause-effect relations in text are implied and have to be inferred by the reader, there is also a wide variety of linguistic expressions for explicitly indicating cause and effect. In addition, it has been found that certain words have "causal valence"-they bias the reader to attribute cause in certain ways. Cause-effect relations can also be divided into several different types.
    Series
    Information science and knowledge management; vol.3

Languages

  • e 81
  • d 17
  • f 2
  • ja 1
  • More… Less…

Types

  • a 85
  • m 7
  • s 7
  • el 4
  • r 4
  • x 3
  • More… Less…