Search (5 results, page 1 of 1)

  • × author_ss:"White, H.D."
  1. Buzydlowski, J.W.; White, H.D.; Lin, X.: Term Co-occurrence Analysis as an Interface for Digital Libraries (2002) 0.04
    0.03610786 = product of:
      0.07221572 = sum of:
        0.07221572 = product of:
          0.14443144 = sum of:
            0.14443144 = weight(_text_:22 in 1339) [ClassicSimilarity], result of:
              0.14443144 = score(doc=1339,freq=6.0), product of:
                0.17960557 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051289067 = queryNorm
                0.804159 = fieldWeight in 1339, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1339)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:16:22
  2. White, H.D.: Pathfinder networks and author cocitation analysis : a remapping of paradigmatic information scientists (2003) 0.02
    0.022411061 = product of:
      0.044822123 = sum of:
        0.044822123 = product of:
          0.089644246 = sum of:
            0.089644246 = weight(_text_:networks in 1459) [ClassicSimilarity], result of:
              0.089644246 = score(doc=1459,freq=4.0), product of:
                0.24259318 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.051289067 = queryNorm
                0.369525 = fieldWeight in 1459, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1459)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In their 1998 article "Visualizing a discipline: An author cocitation analysis of information science, 1972-1995," White and McCain used multidimensional scaling, hierarchical clustering, and factor analysis to display the specialty groupings of 120 highly-cited ("paradigmatic") information scientists. These statistical techniques are traditional in author cocitation analysis (ACA). It is shown here that a newer technique, Pathfinder Networks (PFNETs), has considerable advantages for ACA. In PFNETs, nodes represent authors, and explicit links represent weighted paths between nodes, the weights in this case being cocitation counts. The links can be drawn to exclude all but the single highest counts for author pairs, which reduces a network of authors to only the most salient relationships. When these are mapped, dominant authors can be defined as those with relatively many links to other authors (i.e., high degree centrality). Links between authors and dominant authors define specialties, and links between dominant authors connect specialties into a discipline. Maps are made with one rather than several computer routines and in one rather than many computer passes. Also, PFNETs can, and should, be generated from matrices of raw counts rather than Pearson correlations, which removes a computational step associated with traditional ACA. White and McCain's raw data from 1998 are remapped as a PFNET. It is shown that the specialty groupings correspond closely to those seen in the factor analysis of the 1998 article. Because PFNETs are fast to compute, they are used in AuthorLink, a new Web-based system that creates live interfaces for cocited author retrieval an the fly.
  3. White, H.D.: Citation analysis : history (2009) 0.02
    0.022411061 = product of:
      0.044822123 = sum of:
        0.044822123 = product of:
          0.089644246 = sum of:
            0.089644246 = weight(_text_:networks in 3763) [ClassicSimilarity], result of:
              0.089644246 = score(doc=3763,freq=4.0), product of:
                0.24259318 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.051289067 = queryNorm
                0.369525 = fieldWeight in 3763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3763)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    References from publications are at the same time citations to other publications. This entry introduces some of the practical uses of citation data in science and scholarship. At the individual level citations identify and permit the retrieval of specific editions of works, while also suggesting their subject matter, authority, and age. Through citation indexes, retrievals may include not only the earlier items referred to by a given work, but also the later items that cite that given work in turn. Some technical notes on retrieval are included here. Counts of citations received over time, and measures derived from them, reveal the varying impacts of works, authors, journals, organizations, and countries. This has obvious implications for the evaluation of, e.g., library collections, academics, research teams, and science policies. When treated as linkages between pairs of publications, references and citations reveal intellectual ties. Several kinds of links have been defined, such as cocitation, bibliographic coupling, and intercitation. In the aggregate, these links form networks that compactly suggest the intellectual histories of research specialties and disciplines, especially when the networks are visualized through mapping software. Citation analysis is of course not without critics, who have long pointed out imperfections in the data or in analytical techniques. However, the criticisms have generally been met by strong counterarguments from proponents.
  4. Lin, X.; White, H.D.; Buzydlowski, J.: Real-time author co-citation mapping for online searching (2003) 0.02
    0.019016415 = product of:
      0.03803283 = sum of:
        0.03803283 = product of:
          0.07606566 = sum of:
            0.07606566 = weight(_text_:networks in 1080) [ClassicSimilarity], result of:
              0.07606566 = score(doc=1080,freq=2.0), product of:
                0.24259318 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.051289067 = queryNorm
                0.31355235 = fieldWeight in 1080, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1080)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Author searching is traditionally based on the matching of name strings. Special characteristics of authors as personal names and subject indicators are not considered. This makes it difficult to identify a set of related authors or to group authors by subjects in retrieval systems. In this paper, we describe the design and implementation of a prototype visualization system to enhance author searching. The system, called AuthorLink, is based on author co-citation analysis and visualization mapping algorithms such as Kohonen's feature maps and Pathfinder networks. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific Information. The maps show subject groupings and more fine-grained intellectual connections among authors. Through the interactive interface the user can take advantage of such information to refine queries and retrieve documents through point-and-click manipulation of the authors' names.
  5. White, H.D.; Wellman, B.; Nazer, N.: Does Citation Reflect Social Structure? : Longitudinal Evidence From the "Globenet" Interdisciplinary Research Group (2004) 0.01
    0.012677611 = product of:
      0.025355222 = sum of:
        0.025355222 = product of:
          0.050710443 = sum of:
            0.050710443 = weight(_text_:networks in 2095) [ClassicSimilarity], result of:
              0.050710443 = score(doc=2095,freq=2.0), product of:
                0.24259318 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.051289067 = queryNorm
                0.2090349 = fieldWeight in 2095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many authors have posited a social component in citation, the consensus being that the citers and citees often have interpersonal as well as intellectual ties. Evidence for this belief has been rather meager, however, in part because social networks researchers have lacked bibliometric data (e.g., pairwise citation counts from online databases), and citation analysts have lacked sociometric data (e.g., pairwise measures of acquaintanceship). In 1997 Nazer extensively measured personal relationships and communication behaviors in what we call "Globenet," an international group of 16 researchers from seven disciplines that was established in 1993 to study human development. Since Globenet's membership is known, it was possible during 2002 to obtain citation records for all members in databases of the Institute for Scientific Information. This permitted examination of how members cited each other (intercited) in journal articles over the past three decades and in a 1999 book to which they all contributed. It was also possible to explore links between the intercitation data and the social and communication data. Using network-analytic techniques, we look at the growth of intercitation over time, the extent to which it follows disciplinary or interdisciplinary lines, whether it covaries with degrees of acquaintanceship, whether it reflects Globenet's organizational structure, whether it is associated with particular in-group communication patterns, and whether it is related to the cocitation of Globenet members. Results show cocitation to be a powerful predictor of intercitation in the journal articles, while being an editor or co-author is an important predictor in the book. Intellectual ties based an shared content did better as predictors than content-neutral social ties like friendship. However, interciters in Globenet communicated more than did noninterciters.