Search (416 results, page 1 of 21)

  • × theme_ss:"Informetrie"
  1. Herb, U.; Beucke, D.: ¬Die Zukunft der Impact-Messung : Social Media, Nutzung und Zitate im World Wide Web (2013) 0.15
    0.14809678 = product of:
      0.51833874 = sum of:
        0.25916937 = weight(_text_:2f in 2188) [ClassicSimilarity], result of:
          0.25916937 = score(doc=2188,freq=2.0), product of:
            0.34585547 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04079441 = queryNorm
            0.7493574 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
        0.25916937 = weight(_text_:2f in 2188) [ClassicSimilarity], result of:
          0.25916937 = score(doc=2188,freq=2.0), product of:
            0.34585547 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04079441 = queryNorm
            0.7493574 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
      0.2857143 = coord(2/7)
    
    Content
    Vgl. unter: https://www.leibniz-science20.de%2Fforschung%2Fprojekte%2Faltmetrics-in-verschiedenen-wissenschaftsdisziplinen%2F&ei=2jTgVaaXGcK4Udj1qdgB&usg=AFQjCNFOPdONj4RKBDf9YDJOLuz3lkGYlg&sig2=5YI3KWIGxBmk5_kv0P_8iQ.
  2. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.06
    0.061088804 = product of:
      0.14254054 = sum of:
        0.087116994 = weight(_text_:case in 1291) [ClassicSimilarity], result of:
          0.087116994 = score(doc=1291,freq=8.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.48573974 = fieldWeight in 1291, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.03588238 = weight(_text_:studies in 1291) [ClassicSimilarity], result of:
          0.03588238 = score(doc=1291,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.22043361 = fieldWeight in 1291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.019541178 = product of:
          0.039082356 = sum of:
            0.039082356 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.039082356 = score(doc=1291,freq=4.0), product of:
                0.14285508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04079441 = queryNorm
                0.27358043 = fieldWeight in 1291, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
  3. Egghe, L.: On the law of Zipf-Mandelbrot for multi-word phrases (1999) 0.05
    0.050892763 = product of:
      0.17812467 = sum of:
        0.12071286 = weight(_text_:case in 3058) [ClassicSimilarity], result of:
          0.12071286 = score(doc=3058,freq=6.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.6730608 = fieldWeight in 3058, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0625 = fieldNorm(doc=3058)
        0.05741181 = weight(_text_:studies in 3058) [ClassicSimilarity], result of:
          0.05741181 = score(doc=3058,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.35269377 = fieldWeight in 3058, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0625 = fieldNorm(doc=3058)
      0.2857143 = coord(2/7)
    
    Abstract
    This article studies the probabilities of the occurence of multi-word (m-word) phrases (m=2,3,...) in relation to the probabilities of occurence of the single words. It is well known that, in the latter case, the lae of Zipf is valid (i.e., a power law). We prove that in the case of m-word phrases (m>=2), this is not the case. We present 2 independent proof of this
  4. Haycock, L.A.: Citation analysis of education dissertations for collection development (2004) 0.05
    0.045711204 = product of:
      0.10665947 = sum of:
        0.029183816 = weight(_text_:libraries in 135) [ClassicSimilarity], result of:
          0.029183816 = score(doc=135,freq=2.0), product of:
            0.13401186 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.04079441 = queryNorm
            0.2177704 = fieldWeight in 135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=135)
        0.06089442 = weight(_text_:studies in 135) [ClassicSimilarity], result of:
          0.06089442 = score(doc=135,freq=4.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.37408823 = fieldWeight in 135, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=135)
        0.016581237 = product of:
          0.033162475 = sum of:
            0.033162475 = weight(_text_:22 in 135) [ClassicSimilarity], result of:
              0.033162475 = score(doc=135,freq=2.0), product of:
                0.14285508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04079441 = queryNorm
                0.23214069 = fieldWeight in 135, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=135)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Abstract
    The reference lists of forty-three education dissertations on curriculum and instruction completed at the University of Minnesota during the calendar years 2000-2002 were analyzed to inform collection development. As one measure of use of the academic library collection, the citation analysis yielded data to guide journal selection, retention, and cancellation decisions. The project aimed to ensure that the most frequently cited journals were retained on subscription. The serial monograph ratio for citation also was evaluated in comparison with other studies and explored in the context of funding ratios. Results of citation studies can provide a basis for liaison conversations with faculty in addition to guiding selection decisions. This research project can serve as a model for similar projects in other libraries that look at literature in education as well as other fields.
    Date
    10. 9.2000 17:38:22
  5. Zhang, Y.: ¬The impact of Internet-based electronic resources on formal scholarly communication in the area of library and information science : a citation analysis (1998) 0.04
    0.04242088 = product of:
      0.09898205 = sum of:
        0.043558497 = weight(_text_:case in 2808) [ClassicSimilarity], result of:
          0.043558497 = score(doc=2808,freq=2.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.24286987 = fieldWeight in 2808, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2808)
        0.03588238 = weight(_text_:studies in 2808) [ClassicSimilarity], result of:
          0.03588238 = score(doc=2808,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.22043361 = fieldWeight in 2808, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2808)
        0.019541178 = product of:
          0.039082356 = sum of:
            0.039082356 = weight(_text_:22 in 2808) [ClassicSimilarity], result of:
              0.039082356 = score(doc=2808,freq=4.0), product of:
                0.14285508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04079441 = queryNorm
                0.27358043 = fieldWeight in 2808, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2808)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Abstract
    Internet based electronic resources are growing dramatically but there have been no empirical studies evaluating the impact of e-sources, as a whole, on formal scholarly communication. reports results of an investigation into how much e-sources have been used in formal scholarly communication, using a case study in the area of Library and Information Science (LIS) during the period 1994 to 1996. 4 citation based indicators were used in the study of the impact measurement. Concludes that, compared with the impact of print sources, the impact of e-sources on formal scholarly communication in LIS is small, as measured by e-sources cited, and does not increase significantly by year even though there is observable growth of these impact across the years. It is found that periodical format is related to the rate of citing e-sources, articles are more likely to cite e-sources than are print priodical articles. However, once authors cite electronic resource, there is no significant difference in the number of references per article by periodical format or by year. Suggests that, at this stage, citing e-sources may depend on authors rather than the periodical format in which authors choose to publish
    Date
    30. 1.1999 17:22:22
  6. Leydesdorff, L.; Probst, C.: ¬The delineation of an interdisciplinary specialty in terms of a journal set : the case of communication studies (2009) 0.04
    0.039539404 = product of:
      0.1383879 = sum of:
        0.0522702 = weight(_text_:case in 2952) [ClassicSimilarity], result of:
          0.0522702 = score(doc=2952,freq=2.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.29144385 = fieldWeight in 2952, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=2952)
        0.08611771 = weight(_text_:studies in 2952) [ClassicSimilarity], result of:
          0.08611771 = score(doc=2952,freq=8.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.52904063 = fieldWeight in 2952, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=2952)
      0.2857143 = coord(2/7)
    
    Abstract
    A journal set in an interdisciplinary or newly developing area can be determined by including the journals classified under the most relevant ISI Subject Categories into a journal-journal citation matrix. Despite the fuzzy character of borders, factor analysis of the citation patterns enables us to delineate the specific set by discarding the noise. This methodology is illustrated using communication studies as a hybrid development between political science and social psychology. The development can be visualized using animations which support the claim that a specific journal set in communication studies is increasingly developing, notably in the being cited patterns. The resulting set of 28 journals in communication studies is smaller and more focused than the 45 journals classified by the ISI Subject Categories as Communication. The proposed method is tested for its robustness by extending the relevant environments to sets including many more journals.
  7. Marchionini, G.: Co-evolution of user and organizational interfaces : a longitudinal case study of WWW dissemination of national statistics (2002) 0.04
    0.03899336 = product of:
      0.13647676 = sum of:
        0.08624143 = weight(_text_:case in 1252) [ClassicSimilarity], result of:
          0.08624143 = score(doc=1252,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.48085782 = fieldWeight in 1252, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1252)
        0.05023533 = weight(_text_:studies in 1252) [ClassicSimilarity], result of:
          0.05023533 = score(doc=1252,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.30860704 = fieldWeight in 1252, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1252)
      0.2857143 = coord(2/7)
    
    Abstract
    The data systems, policies and procedures, corporate culture, and public face of an agency or institution make up its organizational interface. This case study describes how user interfaces for the Bureau of Labor Statistics web site evolved over a 5-year period along with the [arger organizational interface and how this co-evolution has influenced the institution itself. Interviews with BLS staff and transaction log analysis are the foci in this analysis that also included user informationseeking studies and user interface prototyping and testing. The results are organized into a model of organizational interface change and related to the information life cycle.
  8. Meho, L.I.; Sugimoto, C.R.: Assessing the scholarly impact of information studies : a tale of two citation databases - Scopus and Web of Science (2009) 0.04
    0.038518757 = product of:
      0.13481565 = sum of:
        0.073921226 = weight(_text_:case in 3298) [ClassicSimilarity], result of:
          0.073921226 = score(doc=3298,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.41216385 = fieldWeight in 3298, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=3298)
        0.06089442 = weight(_text_:studies in 3298) [ClassicSimilarity], result of:
          0.06089442 = score(doc=3298,freq=4.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.37408823 = fieldWeight in 3298, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=3298)
      0.2857143 = coord(2/7)
    
    Abstract
    This study uses citations, from 1996 to 2007, to the work of 80 randomly selected full-time, information studies (IS) faculty members from North America to examine differences between Scopus and Web of Science in assessing the scholarly impact of the field focusing on the most frequently citing journals, conference proceedings, research domains and institutions, as well as all citing countries. Results show that when assessment is limited to smaller citing entities (e.g., journals, conference proceedings, institutions), the two databases produce considerably different results, whereas when assessment is limited to larger citing entities (e.g., research domains, countries), the two databases produce very similar pictures of scholarly impact. In the former case, the use of Scopus (for journals and institutions) and both Scopus and Web of Science (for conference proceedings) is necessary to more accurately assess or visualize the scholarly impact of IS, whereas in the latter case, assessing or visualizing the scholarly impact of IS is independent of the database used.
  9. Olensky, M.; Schmidt, M.; Eck, N.J. van: Evaluation of the citation matching algorithms of CWTS and iFQ in comparison to the Web of science (2016) 0.04
    0.035357464 = product of:
      0.12375112 = sum of:
        0.061601017 = weight(_text_:case in 3130) [ClassicSimilarity], result of:
          0.061601017 = score(doc=3130,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.34346986 = fieldWeight in 3130, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3130)
        0.062150106 = weight(_text_:studies in 3130) [ClassicSimilarity], result of:
          0.062150106 = score(doc=3130,freq=6.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.3818022 = fieldWeight in 3130, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3130)
      0.2857143 = coord(2/7)
    
    Abstract
    The results of bibliometric studies provided by bibliometric research groups, for example, the Centre for Science and Technology Studies (CWTS) and the Institute for Research Information and Quality Assurance (iFQ), are often used in the process of research assessment. Their databases use Web of Science (WoS) citation data, which they match according to their own matching algorithms-in the case of CWTS for standard usage in their studies and in the case of iFQ on an experimental basis. Because the problem of nonmatched citations in the WoS persists due to inaccuracies in the references or inaccuracies introduced in the data extraction process, it is important to ascertain how well these inaccuracies are rectified in these citation matching algorithms. This article evaluates the algorithms of CWTS and iFQ in comparison to the WoS in a quantitative and a qualitative analysis. The analysis builds upon the method and the manually verified corpus of a previous study. The algorithm of CWTS performs best, closely followed by that of iFQ. The WoS algorithm still performs quite well (F1 score: 96.41%), but shows deficits in matching references containing inaccuracies. An additional problem is posed by incorrectly provided cited reference information in source articles by the WoS.
  10. Egghe, L.: Mathematical theory of the h- and g-index in case of fractional counting of authorship (2008) 0.03
    0.03342288 = product of:
      0.116980076 = sum of:
        0.073921226 = weight(_text_:case in 2004) [ClassicSimilarity], result of:
          0.073921226 = score(doc=2004,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.41216385 = fieldWeight in 2004, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=2004)
        0.043058854 = weight(_text_:studies in 2004) [ClassicSimilarity], result of:
          0.043058854 = score(doc=2004,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.26452032 = fieldWeight in 2004, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=2004)
      0.2857143 = coord(2/7)
    
    Abstract
    This article studies the h-index (Hirsch index) and the g-index of authors, in case one counts authorship of the cited articles in a fractional way. There are two ways to do this: One counts the citations to these papers in a fractional way or one counts the ranks of the papers in a fractional way as credit for an author. In both cases, we define the fractional h- and g-indexes, and we present inequalities (both upper and lower bounds) between these fractional h- and g-indexes and their corresponding unweighted values (also involving, of course, the coauthorship distribution). Wherever applicable, examples and counterexamples are provided. In a concrete example (the publication citation list of the present author), we make explicit calculations of these fractional h- and g-indexes and show that they are not very different from the unweighted ones.
  11. Egghe, L.; Guns, R.; Rousseau, R.: Thoughts on uncitedness : Nobel laureates and Fields medalists as case studies (2011) 0.03
    0.03342288 = product of:
      0.116980076 = sum of:
        0.073921226 = weight(_text_:case in 4994) [ClassicSimilarity], result of:
          0.073921226 = score(doc=4994,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.41216385 = fieldWeight in 4994, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=4994)
        0.043058854 = weight(_text_:studies in 4994) [ClassicSimilarity], result of:
          0.043058854 = score(doc=4994,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.26452032 = fieldWeight in 4994, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=4994)
      0.2857143 = coord(2/7)
    
    Abstract
    Contrary to what one might expect, Nobel laureates and Fields medalists have a rather large fraction (10% or more) of uncited publications. This is the case for (in total) 75 examined researchers from the fields of mathematics (Fields medalists), physics, chemistry, and physiology or medicine (Nobel laureates). We study several indicators for these researchers, including the h-index, total number of publications, average number of citations per publication, the number (and fraction) of uncited publications, and their interrelations. The most remarkable result is a positive correlation between the h-index and the number of uncited articles. We also present a Lotkaian model, which partially explains the empirically found regularities.
  12. Thelwall, M.: ¬A comparison of link and URL citation counting (2011) 0.03
    0.030202458 = product of:
      0.1057086 = sum of:
        0.043558497 = weight(_text_:case in 4533) [ClassicSimilarity], result of:
          0.043558497 = score(doc=4533,freq=2.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.24286987 = fieldWeight in 4533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
        0.062150106 = weight(_text_:studies in 4533) [ClassicSimilarity], result of:
          0.062150106 = score(doc=4533,freq=6.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.3818022 = fieldWeight in 4533, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
      0.2857143 = coord(2/7)
    
    Abstract
    Purpose - Link analysis is an established topic within webometrics. It normally uses counts of links between sets of web sites or to sets of web sites. These link counts are derived from web crawlers or commercial search engines with the latter being the only alternative for some investigations. This paper compares link counts with URL citation counts in order to assess whether the latter could be a replacement for the former if the major search engines withdraw their advanced hyperlink search facilities. Design/methodology/approach - URL citation counts are compared with link counts for a variety of data sets used in previous webometric studies. Findings - The results show a high degree of correlation between the two but with URL citations being much less numerous, at least outside academia and business. Research limitations/implications - The results cover a small selection of 15 case studies and so the findings are only indicative. Significant differences between results indicate that the difference between link counts and URL citation counts will vary between webometric studies. Practical implications - Should link searches be withdrawn, then link analyses of less well linked non-academic, non-commercial sites would be seriously weakened, although citations based on e-mail addresses could help to make citations more numerous than links for some business and academic contexts. Originality/value - This is the first systematic study of the difference between link counts and URL citation counts in a variety of contexts and it shows that there are significant differences between the two.
  13. Alger, J.: Can RANK be used to generate a reliable author list for cocitation studies? (1996) 0.03
    0.02964684 = product of:
      0.10376394 = sum of:
        0.029183816 = weight(_text_:libraries in 7171) [ClassicSimilarity], result of:
          0.029183816 = score(doc=7171,freq=2.0), product of:
            0.13401186 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.04079441 = queryNorm
            0.2177704 = fieldWeight in 7171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=7171)
        0.074580126 = weight(_text_:studies in 7171) [ClassicSimilarity], result of:
          0.074580126 = score(doc=7171,freq=6.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.45816267 = fieldWeight in 7171, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=7171)
      0.2857143 = coord(2/7)
    
    Abstract
    Reports results of a study, conducted at Kansas State University Library, to investigate the possibility of using DIALOG's RANK command to generate lists of prominent authors for use in cocitation studies. The emerging and rapidly expanding field of biodiversity was chosen and an online search of SCISEARCH (DIALOG File 34) was conducted to generate a list of potential authors to be used in the study. The RANK command was used to generate a ranked list of those authors cited in the retrieved documents. Results indicate that RANK does not effectively retrieve a quality set of prominent authors for use in cocitation studies. Highly cited authors of general texts of biodiversity cause the derived author map to present a misaligned picture of specialization within the field. Concludes that, by limiting citations to periodical articles only, a clearer and more accurate picture of the field should emerge
    Source
    College and research libraries news. 57(1996) no.6, S.567-574
  14. Meadows, J.: ¬The immediacy effect - then and now (2004) 0.03
    0.02964684 = product of:
      0.10376394 = sum of:
        0.029183816 = weight(_text_:libraries in 4418) [ClassicSimilarity], result of:
          0.029183816 = score(doc=4418,freq=2.0), product of:
            0.13401186 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.04079441 = queryNorm
            0.2177704 = fieldWeight in 4418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=4418)
        0.074580126 = weight(_text_:studies in 4418) [ClassicSimilarity], result of:
          0.074580126 = score(doc=4418,freq=6.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.45816267 = fieldWeight in 4418, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=4418)
      0.2857143 = coord(2/7)
    
    Abstract
    The 1960s saw the birth of what is now called "scientometrics". One of the queries that arose then related to citations of previous literature. Was recent literature cited proportionately more than older literature? Studies by Price, along with that reprinted here, seemed to indicate that the answer was "yes". This "immediacy effect", as it was labelled, could be measured in quantitative terms, but how to do so required some thought. For example, what was the best form of index for representing immediacy, and what errors were involved in estimating the effect? Discussions of the usage of past literature could have practical implications for libraries. One question, therefore, was what implications, if any, citation studies had for the provision of journals to library users. On the scientometrics side, there were such questions as why an immediacy effect occurred and to what extent it could be discerned in different subject areas. This article surveys attempts to examine questions like these over the period from the 1960s to the present day, updating an article published in Journal of Documentation in 1967. Keywords: Literature, Records management, User studies
  15. Schwartz, C.A.: ¬The rise and fall of uncitedness (1997) 0.03
    0.029458584 = product of:
      0.10310504 = sum of:
        0.029183816 = weight(_text_:libraries in 7658) [ClassicSimilarity], result of:
          0.029183816 = score(doc=7658,freq=2.0), product of:
            0.13401186 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.04079441 = queryNorm
            0.2177704 = fieldWeight in 7658, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=7658)
        0.073921226 = weight(_text_:case in 7658) [ClassicSimilarity], result of:
          0.073921226 = score(doc=7658,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.41216385 = fieldWeight in 7658, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=7658)
      0.2857143 = coord(2/7)
    
    Abstract
    Large scale uncitedness refers to the significant proportion of articles that do not receive a single citation within 5 years of publication. Notes the brief and troubled history of this area of inquiry, which was prone to miscalculation, misinterpretation, and politicization. Reassesses large scale uncitedness as both a general phenomenon in the scholarly communication system (with data for the physical sciences, social sciences and humanities) and a case study of library and information science, where its rate was reported to be 72%. The study was in 4 parts: examination of the problem of disaggregation in the study of uncitedness; review of the reaction of the popular press and scholars to uncitedness; a case study of uncitedness in C&RL; and a brief summary with suggestions for further research. Data disaggregation was found to be essential in interpreting citation data from tools such as Science Citation Index, Arts and Humanities Citation Index and Social Sciences Citation Index; which do not differentiate between articles and marginal materials (book reviews, letters, obituaries). Stresses the dangers of conclusions from uncitedness data
    Source
    College and research libraries. 58(1997) no.1, S.19-29
  16. Rafols, I.; Leydesdorff, L.: Content-based and algorithmic classifications of journals : perspectives on the dynamics of scientific communication and indexer effects (2009) 0.03
    0.027852401 = product of:
      0.0974834 = sum of:
        0.061601017 = weight(_text_:case in 3095) [ClassicSimilarity], result of:
          0.061601017 = score(doc=3095,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.34346986 = fieldWeight in 3095, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3095)
        0.03588238 = weight(_text_:studies in 3095) [ClassicSimilarity], result of:
          0.03588238 = score(doc=3095,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.22043361 = fieldWeight in 3095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3095)
      0.2857143 = coord(2/7)
    
    Abstract
    The aggregated journal-journal citation matrix - based on the Journal Citation Reports (JCR) of the Science Citation Index - can be decomposed by indexers or algorithmically. In this study, we test the results of two recently available algorithms for the decomposition of large matrices against two content-based classifications of journals: the ISI Subject Categories and the field/subfield classification of Glänzel and Schubert (2003). The content-based schemes allow for the attribution of more than a single category to a journal, whereas the algorithms maximize the ratio of within-category citations over between-category citations in the aggregated category-category citation matrix. By adding categories, indexers generate between-category citations, which may enrich the database, for example, in the case of inter-disciplinary developments. Algorithmic decompositions, on the other hand, are more heavily skewed towards a relatively small number of categories, while this is deliberately counter-acted upon in the case of content-based classifications. Because of the indexer effects, science policy studies and the sociology of science should be careful when using content-based classifications, which are made for bibliographic disclosure, and not for the purpose of analyzing latent structures in scientific communications. Despite the large differences among them, the four classification schemes enable us to generate surprisingly similar maps of science at the global level. Erroneous classifications are cancelled as noise at the aggregate level, but may disturb the evaluation locally.
  17. Leydesdorff, L.; Zhou, P.; Bornmann, L.: How can journal impact factors be normalized across fields of science? : An assessment in terms of percentile ranks and fractional counts (2013) 0.03
    0.027852401 = product of:
      0.0974834 = sum of:
        0.061601017 = weight(_text_:case in 532) [ClassicSimilarity], result of:
          0.061601017 = score(doc=532,freq=4.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.34346986 = fieldWeight in 532, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=532)
        0.03588238 = weight(_text_:studies in 532) [ClassicSimilarity], result of:
          0.03588238 = score(doc=532,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.22043361 = fieldWeight in 532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=532)
      0.2857143 = coord(2/7)
    
    Abstract
    Using the CD-ROM version of the Science Citation Index 2010 (N = 3,705 journals), we study the (combined) effects of (a) fractional counting on the impact factor (IF) and (b) transformation of the skewed citation distributions into a distribution of 100 percentiles and six percentile rank classes (top-1%, top-5%, etc.). Do these approaches lead to field-normalized impact measures for journals? In addition to the 2-year IF (IF2), we consider the 5-year IF (IF5), the respective numerators of these IFs, and the number of Total Cites, counted both as integers and fractionally. These various indicators are tested against the hypothesis that the classification of journals into 11 broad fields by PatentBoard/NSF (National Science Foundation) provides statistically significant between-field effects. Using fractional counting the between-field variance is reduced by 91.7% in the case of IF5, and by 79.2% in the case of IF2. However, the differences in citation counts are not significantly affected by fractional counting. These results accord with previous studies, but the longer citation window of a fractionally counted IF5 can lead to significant improvement in the normalization across fields.
  18. Oppenheim, C.: Do citations count? : Citation indexing and the Research Assessment Exercise (RAE) (1996) 0.03
    0.02752102 = product of:
      0.096323565 = sum of:
        0.038911756 = weight(_text_:libraries in 6673) [ClassicSimilarity], result of:
          0.038911756 = score(doc=6673,freq=2.0), product of:
            0.13401186 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.04079441 = queryNorm
            0.29036054 = fieldWeight in 6673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0625 = fieldNorm(doc=6673)
        0.05741181 = weight(_text_:studies in 6673) [ClassicSimilarity], result of:
          0.05741181 = score(doc=6673,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.35269377 = fieldWeight in 6673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0625 = fieldNorm(doc=6673)
      0.2857143 = coord(2/7)
    
    Abstract
    Citations are used to illustrate or elaborate on a point, or to criticize. Citation studies, based on ISI's citation indexes, can help evaluate scientific research, while impact factors aid libraries in deciding which journals to cancel or purchase. Suggests that citiation counts can replace the costly RAE in assessing the research output of university departments
  19. Meho, L.I.; Sonnenwald, D.H.: Citation ranking versus peer evaluation of senior faculty research performance : a case study of Kurdish scholarship (2000) 0.03
    0.027236873 = product of:
      0.09532905 = sum of:
        0.0522702 = weight(_text_:case in 4382) [ClassicSimilarity], result of:
          0.0522702 = score(doc=4382,freq=2.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.29144385 = fieldWeight in 4382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=4382)
        0.043058854 = weight(_text_:studies in 4382) [ClassicSimilarity], result of:
          0.043058854 = score(doc=4382,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.26452032 = fieldWeight in 4382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=4382)
      0.2857143 = coord(2/7)
    
    Abstract
    The purpose of this study is to analyze the relationship between citation ranking and peer evaluation in assessing senior faculty research performance. Other studies typically derive their peer evaluation data directly from referees, often in the form of ranking. This study uses two additional sources of peer evaluation data: citation contant analysis and book review content analysis. 2 main questions are investigated: (a) To what degree does citation ranking correlate with data from citation content analysis, book reviews and peer ranking? (b) Is citation ranking a valif evaluative indicator of research performance of senior faculty members? This study shows that citation ranking can provide a valid indicator for comparative evaluation of senior faculty research performance
  20. Chen, C.; Cribbin, T.; Macredie, R.; Morar, S.: Visualizing and tracking the growth of competing paradigms : two case studies (2002) 0.03
    0.027236873 = product of:
      0.09532905 = sum of:
        0.0522702 = weight(_text_:case in 602) [ClassicSimilarity], result of:
          0.0522702 = score(doc=602,freq=2.0), product of:
            0.17934912 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.04079441 = queryNorm
            0.29144385 = fieldWeight in 602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=602)
        0.043058854 = weight(_text_:studies in 602) [ClassicSimilarity], result of:
          0.043058854 = score(doc=602,freq=2.0), product of:
            0.1627809 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.04079441 = queryNorm
            0.26452032 = fieldWeight in 602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=602)
      0.2857143 = coord(2/7)
    

Authors

Years

Languages

  • e 405
  • d 9
  • dk 1
  • ro 1
  • More… Less…

Types

  • a 410
  • el 7
  • m 5
  • r 1
  • s 1
  • More… Less…