Search (3 results, page 1 of 1)

  • × classification_ss:"004"
  1. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.03
    0.02557259 = product of:
      0.06819358 = sum of:
        0.016537005 = weight(_text_:libraries in 2752) [ClassicSimilarity], result of:
          0.016537005 = score(doc=2752,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.12703274 = fieldWeight in 2752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.042260814 = weight(_text_:studies in 2752) [ClassicSimilarity], result of:
          0.042260814 = score(doc=2752,freq=6.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26726153 = fieldWeight in 2752, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.009395756 = product of:
          0.018791512 = sum of:
            0.018791512 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
              0.018791512 = score(doc=2752,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.1354154 = fieldWeight in 2752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2752)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    The doctoral thesis of Tatiana Gossen formulates criteria and guidelines on how to design the user interfaces of search engines for children. In her work, the author identifies the conceptual challenges based on own and previous user studies and addresses the changing characteristics of the users by providing a means of adaptation. Additionally, a novel type of search result visualisation for children with cartoon style characters is developed taking children's preference for visual information into account.
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
  2. Borgman, C.L.: Big data, little data, no data : scholarship in the networked world (2015) 0.02
    0.01543377 = product of:
      0.06173508 = sum of:
        0.033850174 = weight(_text_:case in 2785) [ClassicSimilarity], result of:
          0.033850174 = score(doc=2785,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.1942959 = fieldWeight in 2785, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=2785)
        0.027884906 = weight(_text_:studies in 2785) [ClassicSimilarity], result of:
          0.027884906 = score(doc=2785,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.17634688 = fieldWeight in 2785, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03125 = fieldNorm(doc=2785)
      0.25 = coord(2/8)
    
    Abstract
    "Big Data" is on the covers of Science, Nature, the Economist, and Wired magazines, on the front pages of the Wall Street Journal and the New York Times. But despite the media hyperbole, as Christine Borgman points out in this examination of data and scholarly research, having the right data is usually better than having more data; little data can be just as valuable as big data. In many cases, there are no data -- because relevant data don't exist, cannot be found, or are not available. Moreover, data sharing is difficult, incentives to do so are minimal, and data practices vary widely across disciplines. Borgman, an often-cited authority on scholarly communication, argues that data have no value or meaning in isolation; they exist within a knowledge infrastructure -- an ecology of people, practices, technologies, institutions, material objects, and relationships. After laying out the premises of her investigation -- six "provocations" meant to inspire discussion about the uses of data in scholarship -- Borgman offers case studies of data practices in the sciences, the social sciences, and the humanities, and then considers the implications of her findings for scholarly practice and research policy. To manage and exploit data over the long term, Borgman argues, requires massive investment in knowledge infrastructures; at stake is the future of scholarship.
  3. Cole, C.: ¬The consciousness' drive : information need and the search for meaning (2018) 0.00
    0.0036970512 = product of:
      0.02957641 = sum of:
        0.02957641 = weight(_text_:studies in 480) [ClassicSimilarity], result of:
          0.02957641 = score(doc=480,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.18704411 = fieldWeight in 480, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0234375 = fieldNorm(doc=480)
      0.125 = coord(1/8)
    
    Footnote
    Cole's reliance upon Donald's Theory of Mind is limiting; it represents a major weakness of the book. Donald's Theory of Mind has been an influential model in evolutionary psychology, appearing in his 1991 book Origins of the Modern Mind: Three Stages in the Evolution of Culture and Cognition (Harvard University Press). Donald's approach is a top-down, conceptual model that explicates what makes the human mind different and exceptional from other animal intelligences. However, there are other alternative, useful, science-based models of animal and human cognition that begin with a bottom-up approach to understanding the building blocks of cognition shared in common by humans and other "intelligent" animals. For example, in "A Bottom-Up Approach to the Primate Mind," Frans B.M. de Waal and Pier Francesco Ferrari note that neurophysiological studies show that specific neuron assemblies in the rat hippocampus are active during memory retrieval and that those same assemblies predict future choices. This would suggest that episodic memory and future orientation aren't as advanced a process as Donald posits in his Theory of Mind. Also, neuroimaging studies in humans show that the cortical areas active during observations of another's actions are related in position and structure to those areas identified as containing mirror neurons in macaques. Could this point to a physiological basis for imitation? ... (Scott Curtis)"