Search (3 results, page 1 of 1)

  • × classification_ss:"025.04 / dc22"
  1. O'Connor, B.C.; Kearns, J.; Anderson, R.L.: Doing things with information : beyond indexing and abstracting (2008) 0.01
    0.011696085 = product of:
      0.04678434 = sum of:
        0.018899433 = weight(_text_:libraries in 4297) [ClassicSimilarity], result of:
          0.018899433 = score(doc=4297,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.14518027 = fieldWeight in 4297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03125 = fieldNorm(doc=4297)
        0.027884906 = weight(_text_:studies in 4297) [ClassicSimilarity], result of:
          0.027884906 = score(doc=4297,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.17634688 = fieldWeight in 4297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03125 = fieldNorm(doc=4297)
      0.25 = coord(2/8)
    
    Abstract
    The relationship between a person with a question and a source of information is complex. Indexing and abstracting often fail because too much emphasis is put on the mechanics of description, and too little has been given as to what ought to be represented. Research literature suggests that inappropriate representation results in failed searches a significant number of times, perhaps even in a majority of cases. "Doing Things with Information" seeks to rectify this unfortunate situation by emphasizing methods of modeling and constructing appropriate representations of such questions and documents. Students in programs of information studies will find focal points for discussion about system design and refinement of existing systems. Librarians, scholars, and those who work within large document collections, whether paper or electronic, will find insights into the strengths and weaknesses of the access systems they use.
    Imprint
    Westport, Conn. : Libraries Unlimited
  2. Antoniou, G.; Harmelen, F. van: ¬A semantic Web primer (2004) 0.01
    0.0096461065 = product of:
      0.038584426 = sum of:
        0.021156358 = weight(_text_:case in 468) [ClassicSimilarity], result of:
          0.021156358 = score(doc=468,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.121434934 = fieldWeight in 468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.01953125 = fieldNorm(doc=468)
        0.017428067 = weight(_text_:studies in 468) [ClassicSimilarity], result of:
          0.017428067 = score(doc=468,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.110216804 = fieldWeight in 468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.01953125 = fieldNorm(doc=468)
      0.25 = coord(2/8)
    
    Footnote
    The next chapter introduces resource description framework (RDF) and RDF schema (RDFS). Unlike XML, RDF provides a foundation for expressing the semantics of dada: it is a standard dada model for machine-processable semantics. Resource description framework schema offers a number of modeling primitives for organizing RDF vocabularies in typed hierarchies. In addition to RDF and RDFS, a query language for RDF, i.e. RQL. is introduced. This chapter and the next chapter are two of the most important chapters in the book. Chapter 4 presents another language called Web Ontology Language (OWL). Because RDFS is quite primitive as a modeling language for the Web, more powerful languages are needed. A richer language. DAML+OIL, is thus proposed as a joint endeavor of the United States and Europe. OWL takes DAML+OIL as the starting point, and aims to be the standardized and broadly accepted ontology language. At the beginning of the chapter, the nontrivial relation with RDF/RDFS is discussed. Then the authors describe the various language elements of OWL in some detail. Moreover, Appendix A contains an abstract OWL syntax. which compresses OWL and makes OWL much easier to read. Chapter 5 covers both monotonic and nonmonotonic rules. Whereas the previous chapter's mainly concentrate on specializations of knowledge representation, this chapter depicts the foundation of knowledge representation and inference. Two examples are also givwn to explain monotonic and non-monotonic rules, respectively. "To get the most out of the chapter. readers had better gain a thorough understanding of predicate logic first. Chapter 6 presents several realistic application scenarios to which the Semantic Web technology can be applied. including horizontal information products at Elsevier, data integration at Audi, skill finding at Swiss Life, a think tank portal at EnerSearch, e-learning. Web services, multimedia collection indexing, online procurement, raid device interoperability. These case studies give us some real feelings about the Semantic Web.
  3. TREC: experiment and evaluation in information retrieval (2005) 0.01
    0.0076506473 = product of:
      0.03060259 = sum of:
        0.011812146 = weight(_text_:libraries in 636) [ClassicSimilarity], result of:
          0.011812146 = score(doc=636,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.09073767 = fieldWeight in 636, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.01953125 = fieldNorm(doc=636)
        0.018790444 = product of:
          0.03758089 = sum of:
            0.03758089 = weight(_text_:area in 636) [ClassicSimilarity], result of:
              0.03758089 = score(doc=636,freq=4.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.19247052 = fieldWeight in 636, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=636)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    The Text REtrieval Conference (TREC), a yearly workshop hosted by the US government's National Institute of Standards and Technology, provides the infrastructure necessary for large-scale evaluation of text retrieval methodologies. With the goal of accelerating research in this area, TREC created the first large test collections of full-text documents and standardized retrieval evaluation. The impact has been significant; since TREC's beginning in 1992, retrieval effectiveness has approximately doubled. TREC has built a variety of large test collections, including collections for such specialized retrieval tasks as cross-language retrieval and retrieval of speech. Moreover, TREC has accelerated the transfer of research ideas into commercial systems, as demonstrated in the number of retrieval techniques developed in TREC that are now used in Web search engines. This book provides a comprehensive review of TREC research, summarizing the variety of TREC results, documenting the best practices in experimental information retrieval, and suggesting areas for further research. The first part of the book describes TREC's history, test collections, and retrieval methodology. Next, the book provides "track" reports -- describing the evaluations of specific tasks, including routing and filtering, interactive retrieval, and retrieving noisy text. The final part of the book offers perspectives on TREC from such participants as Microsoft Research, University of Massachusetts, Cornell University, University of Waterloo, City University of New York, and IBM. The book will be of interest to researchers in information retrieval and related technologies, including natural language processing.
    Footnote
    ... TREC: Experiment and Evaluation in Information Retrieval is a reliable and comprehensive review of the TREC program and has been adopted by NIST as the official history of TREC (see http://trec.nist.gov). We were favorably surprised by the book. Well structured and written, chapters are self-contained and the existence of references to specialized and more detailed publications is continuous, which makes it easier to expand into the different aspects analyzed in the text. This book succeeds in compiling TREC evolution from its inception in 1992 to 2003 in an adequate and manageable volume. Thanks to the impressive effort performed by the authors and their experience in the field, it can satiate the interests of a great variety of readers. While expert researchers in the IR field and IR-related industrial companies can use it as a reference manual, it seems especially useful for students and non-expert readers willing to approach this research area. Like NIST, we would recommend this reading to anyone who may be interested in textual information retrieval."
    Series
    Digital libraries and electronic publishing