Search (79 results, page 1 of 4)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Bhogal, J.; Macfarlane, A.; Smith, P.: ¬A review of ontology based query expansion (2007) 0.05
    0.054464836 = product of:
      0.14523956 = sum of:
        0.059237804 = weight(_text_:case in 919) [ClassicSimilarity], result of:
          0.059237804 = score(doc=919,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.34001783 = fieldWeight in 919, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0546875 = fieldNorm(doc=919)
        0.048798583 = weight(_text_:studies in 919) [ClassicSimilarity], result of:
          0.048798583 = score(doc=919,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.30860704 = fieldWeight in 919, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0546875 = fieldNorm(doc=919)
        0.037203178 = product of:
          0.074406356 = sum of:
            0.074406356 = weight(_text_:area in 919) [ClassicSimilarity], result of:
              0.074406356 = score(doc=919,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.38107216 = fieldWeight in 919, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=919)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    This paper examines the meaning of context in relation to ontology based query expansion and contains a review of query expansion approaches. The various query expansion approaches include relevance feedback, corpus dependent knowledge models and corpus independent knowledge models. Case studies detailing query expansion using domain-specific and domain-independent ontologies are also included. The penultimate section attempts to synthesise the information obtained from the review and provide success factors in using an ontology for query expansion. Finally the area of further research in applying context from an ontology to query expansion within a newswire domain is described.
  2. Shiri, A.A.; Revie, C.; Chowdhury, G.: Thesaurus-assisted search term selection and query expansion : a review of user-centred studies (2002) 0.04
    0.038307734 = product of:
      0.15323094 = sum of:
        0.05077526 = weight(_text_:case in 1330) [ClassicSimilarity], result of:
          0.05077526 = score(doc=1330,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 1330, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=1330)
        0.10245568 = weight(_text_:studies in 1330) [ClassicSimilarity], result of:
          0.10245568 = score(doc=1330,freq=12.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.6479398 = fieldWeight in 1330, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=1330)
      0.25 = coord(2/8)
    
    Abstract
    This paper provides a review of the literature related to the application of domain-specific thesauri in the search and retrieval process. Focusing an studies that adopt a user-centred approach, the review presents a survey of the methodologies and results from empirical studies undertaken an the use of thesauri as sources of term selection for query formulation and expansion during the search process. It summarises the ways in which domain-specific thesauri from different disciplines have been used by various types of users and how these tools aid users in the selection of search terms. The review consists of two main sections: first, studies an thesaurus-aided search term selection; and second, studies dealing with query expansion using thesauri. Both sections are illustrated with case studies that have adopted a user-centred approach.
  3. Case, D.O.: Looking for information : a survey on research on information seeking, needs, and behavior (2002) 0.04
    0.035292473 = product of:
      0.14116989 = sum of:
        0.071807064 = weight(_text_:case in 1270) [ClassicSimilarity], result of:
          0.071807064 = score(doc=1270,freq=16.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 1270, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1270)
        0.06936283 = weight(_text_:studies in 1270) [ClassicSimilarity], result of:
          0.06936283 = score(doc=1270,freq=22.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.43865734 = fieldWeight in 1270, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1270)
      0.25 = coord(2/8)
    
    Footnote
    Rez. in: JASIST 54(2003) no.7, S.695-697 (R. Savolainen): "Donald O. Case has written an ambitious book to create an overall picture of the major approaches to information needs and seeking (INS) studies. The aim to write an extensive review is reflected in the list of references containing about 700 items. The high ambitions are explained an p. 14, where Case states that he is aiming at a multidisciplinary understanding of the concept of information seeking. In the Preface, the author characterizes his book as an introduction to the topic for students at the graduate level, as well as as a review and handbook for scholars engagged in information behavior research. In my view, Looking for Information is particularly welcome as an academic textbook because the field of INS studies suffers from the lack of monographs. Along with the continuous growth of the number of journal articles and conference papers, there is a genuine need for a book that picks up the numerous pieces and puts them together. The use of the study as a textbook is facilitated by clearly delineated sections an major themes and the wealth of concrete examples of information seeking in everyday contexts. The book is lucidly written and it is accessible to novice readers, too. At first glance, the idea of providing a comprehensive review of INS studies may seem a mission impossible because the current number of articles, papers, and other contributions in this field is nearing the 10,000 range (p. 224). Donald Case is not alone in the task of coming to grips with an increasing number of studies; similar problems have been faced by those writing INS-related chapters for the Annual Review of Information Science and Technology (ARIST). Case has solved the problem of "too many publications to be reviewed" by concentrating an the INS literature published during the last two decades. Secondly, studies an library use and information retrieval are discussed only to a limited extent. In addition, Case is highly selective as to studies focusing an the use of specific sources and channels such as WWW. These delineations are reasonable, even though they beg some questions. First, how should one draw the line between studies an information seeking and information retrieval? Case does not discuss this question in greater detail, although in recent years, the overlapping areas of information seeking and retrieval studies have been broadened, along with the growing importance of WWW in information seeking/retrieval. Secondly, how can one define the concept of information searching (or, more specifically, Internet or Web searching) in relation to information seeking and information retrieval? In the field of Web searching studies, there is an increasing number of contributions that are of direct relevance to information-seeking studies. Clearly, the advent of the Internet, particularly, the Web, has blurred the previous lines between INS and IR literature, making them less clear cut. The book consists of five main sections, and comprises 13 chapters. There is an Appendix serving the needs of an INS textbook (questions for discussion and application). The structure of the book is meticulously planned and, as a whole, it offers a sufficiently balanced contribution to theoretical, methodological, and empirical issues of INS. The title, Looking for Information: A Survey of Research an Information Seeking, Needs, and Behavior aptly describes the main substance of the book. . . . It is easy to agree with Case about the significance of the problem of specialization and fragmentation. This problem seems to be concomitant with the broadening field of INS research. In itself, Case's book can be interpreted as a struggle against this fragmentation. His book suggests that this struggle is not hopeless and that it is still possible to draw an overall picture of the evolving research field. The major pieces of the puzzle were found and the book will provide a useful overview of INS studies for many years."
  4. Looking for information : a survey on research on information seeking, needs, and behavior (2016) 0.03
    0.028006244 = product of:
      0.11202498 = sum of:
        0.042312715 = weight(_text_:case in 3803) [ClassicSimilarity], result of:
          0.042312715 = score(doc=3803,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 3803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3803)
        0.06971227 = weight(_text_:studies in 3803) [ClassicSimilarity], result of:
          0.06971227 = score(doc=3803,freq=8.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.44086722 = fieldWeight in 3803, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3803)
      0.25 = coord(2/8)
    
    Abstract
    The 4th edition of this popular and well-cited text is now co-authored, and includes significant changes from earlier texts. Presenting a comprehensive review of over a century of research on information behavior (IB), this book is intended for students in information studies and disciplines interested in research on information activities. The initial two chapters introduce IB as a multi-disciplinary topic, the 3rd provides a brief history of research on information seeking. Chapter four discusses what is meant by the terms "information" and "knowledge. "Chapter five discusses "information needs," and how they are addressed. The 6th chapter identifies many related concepts. Twelve models of information behavior (expanded from earlier editions) are illustrated in chapter seven. Chapter eight reviews various paradigms and theories informing IB research. Chapter nine examines research methods invoked in IB studies and a discussion of qualitative and mixed approaches. The 10th chapter gives examples of IB studies by context. The final chapter looks at strengths and weaknesses, recent trends, and future development.
    Editor
    Case, D.O. u. Lisa M. Given
    Series
    Studies in information
  5. Nie, J.-Y.: Query expansion and query translation as logical inference (2003) 0.03
    0.02748202 = product of:
      0.10992808 = sum of:
        0.05077526 = weight(_text_:case in 1425) [ClassicSimilarity], result of:
          0.05077526 = score(doc=1425,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 1425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=1425)
        0.05915282 = weight(_text_:studies in 1425) [ClassicSimilarity], result of:
          0.05915282 = score(doc=1425,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.37408823 = fieldWeight in 1425, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=1425)
      0.25 = coord(2/8)
    
    Abstract
    A number of studies have examined the problems of query expansion in monolingual Information Retrieval (IR), and query translation for crosslanguage IR. However, no link has been made between them. This article first shows that query translation is a special case of query expansion. There is also another set of studies an inferential IR. Again, there is no relationship established with query translation or query expansion. The second claim of this article is that logical inference is a general form that covers query expansion and query translation. This analysis provides a unified view of different subareas of IR. We further develop the inferential IR approach in two particular contexts: using fuzzy logic and probability theory. The evaluation formulas obtained are shown to strongly correspond to those used in other IR models. This indicates that inference is indeed the core of advanced IR.
  6. Wongthontham, P.; Abu-Salih, B.: Ontology-based approach for semantic data extraction from social big data : state-of-the-art and research directions (2018) 0.02
    0.023150655 = product of:
      0.09260262 = sum of:
        0.05077526 = weight(_text_:case in 4097) [ClassicSimilarity], result of:
          0.05077526 = score(doc=4097,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 4097, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
        0.04182736 = weight(_text_:studies in 4097) [ClassicSimilarity], result of:
          0.04182736 = score(doc=4097,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 4097, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
      0.25 = coord(2/8)
    
    Abstract
    A challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academic and industry. To address this challenge, semantic analysis of textual data is focused in this paper. We propose an ontology-based approach to extract semantics of textual data and define the domain of data. In other words, we semantically analyse the social data at two levels i.e. the entity level and the domain level. We have chosen Twitter as a social channel challenge for a purpose of concept proof. Domain knowledge is captured in ontologies which are then used to enrich the semantics of tweets provided with specific semantic conceptual representation of entities that appear in the tweets. Case studies are used to demonstrate this approach. We experiment and evaluate our proposed approach with a public dataset collected from Twitter and from the politics domain. The ontology-based approach leverages entity extraction and concept mappings in terms of quantity and accuracy of concept identification.
  7. Bräscher, M.: Semantic relations in knowledge organization systems (2014) 0.02
    0.022760313 = product of:
      0.09104125 = sum of:
        0.05915282 = weight(_text_:studies in 1380) [ClassicSimilarity], result of:
          0.05915282 = score(doc=1380,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.37408823 = fieldWeight in 1380, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=1380)
        0.031888437 = product of:
          0.06377687 = sum of:
            0.06377687 = weight(_text_:area in 1380) [ClassicSimilarity], result of:
              0.06377687 = score(doc=1380,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32663327 = fieldWeight in 1380, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1380)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Semantic relations in knowledge organization systems (KOS) are discussed as well as the need to analyze and systematize the contributions from different areas of knowledge that are devoted to semantic studies in order to collaborate in the definition of a theoretical framework for the study of types of relations included in KOS. Partial results of a survey reveal that, in general, standards and guidelines for developing thesauri are limited to defining and exemplifying types of relationships without guidance concerning the theoretical underpinning of these definitions. The possibilities of a compositional approach to defining the meaning of syntagmatic relations is discussed. Studies on the theoretical foundations that guide the establishment of semantic relations and approaches to be adopted for the preparation of KOS certainly contribute to consolidating a theoretical framework for the area of knowledge organization.
  8. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.02
    0.021303292 = product of:
      0.08521317 = sum of:
        0.047248583 = weight(_text_:libraries in 1352) [ClassicSimilarity], result of:
          0.047248583 = score(doc=1352,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.36295068 = fieldWeight in 1352, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.078125 = fieldNorm(doc=1352)
        0.037964586 = product of:
          0.07592917 = sum of:
            0.07592917 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.07592917 = score(doc=1352,freq=4.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
    Source
    Visual Interfaces to Digital Libraries. Eds.: Börner, K. u. C. Chen
  9. Schaefer, A.; Jordan, M.; Klas, C.-P.; Fuhr, N.: Active support for query formulation in virtual digital libraries : a case study with DAFFODIL (2005) 0.02
    0.020807797 = product of:
      0.08323119 = sum of:
        0.040918473 = weight(_text_:libraries in 4296) [ClassicSimilarity], result of:
          0.040918473 = score(doc=4296,freq=6.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.3143245 = fieldWeight in 4296, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4296)
        0.042312715 = weight(_text_:case in 4296) [ClassicSimilarity], result of:
          0.042312715 = score(doc=4296,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 4296, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4296)
      0.25 = coord(2/8)
    
    Abstract
    Daffodil is a front-end to federated, heterogeneous digital libraries targeting at strategic support of users during the information seeking process. This is done by offering a variety of functions for searching, exploring and managing digital library objects. However, the distributed search increases response time and the conceptual model of the underlying search processes is inherently weaker. This makes query formulation harder and the resulting waiting times can be frustrating. In this paper, we investigate the concept of proactive support during the user's query formulation. For improving user efficiency and satisfaction, we implemented annotations, proactive support and error markers on the query form itself. These functions decrease the probability for syntactical or semantical errors in queries. Furthermore, the user is able to make better tactical decisions and feels more confident that the system handles the query properly. Evaluations with 30 subjects showed that user satisfaction is improved, whereas no conclusive results were received for efficiency.
    Source
    Research and advanced technology for digital libraries : 9th European conference, ECDL 2005, Vienna, Austria, September 18-23, 2005 ; proceedings / Andreas Rauber ... (eds.)
  10. Salaba, A.; Zeng, M.L.: Extending the "Explore" user task beyond subject authority data into the linked data sphere (2014) 0.02
    0.01950733 = product of:
      0.07802932 = sum of:
        0.059237804 = weight(_text_:case in 1465) [ClassicSimilarity], result of:
          0.059237804 = score(doc=1465,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.34001783 = fieldWeight in 1465, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1465)
        0.018791512 = product of:
          0.037583023 = sum of:
            0.037583023 = weight(_text_:22 in 1465) [ClassicSimilarity], result of:
              0.037583023 = score(doc=1465,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.2708308 = fieldWeight in 1465, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1465)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    "Explore" is a user task introduced in the Functional Requirements for Subject Authority Data (FRSAD) final report. Through various case scenarios, the authors discuss how structured data, presented based on Linked Data principles and using knowledge organisation systems (KOS) as the backbone, extend the explore task within and beyond subject authority data.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  11. Bayer, O.; Höhfeld, S.; Josbächer, F.; Kimm, N.; Kradepohl, I.; Kwiatkowski, M.; Puschmann, C.; Sabbagh, M.; Werner, N.; Vollmer, U.: Evaluation of an ontology-based knowledge-management-system : a case study of Convera RetrievalWare 8.0 (2005) 0.02
    0.016484251 = product of:
      0.065937005 = sum of:
        0.023624292 = weight(_text_:libraries in 624) [ClassicSimilarity], result of:
          0.023624292 = score(doc=624,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 624, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=624)
        0.042312715 = weight(_text_:case in 624) [ClassicSimilarity], result of:
          0.042312715 = score(doc=624,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 624, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=624)
      0.25 = coord(2/8)
    
    Abstract
    With RetrievalWare 8.0(TM) the American company Convera offers an elaborated software in the range of Information Retrieval, Information Indexing and Knowledge Management. Convera promises the possibility of handling different file formats in many different languages. Regarding comparable products one innovation is to be stressed particularly: the possibility of the preparation as well as integration of an ontology. One tool of the software package is useful in order to produce ontologies manually, to process existing ontologies and to import the very. The processing of search results is also to be mentioned. By means of categorization strategies search results can be classified dynamically and presented in personalized representations. This study presents an evaluation of the functions and components of the system. Technological aspects and modes of operation under the surface of Convera RetrievalWare will be analysed, with a focus on the creation of libraries and thesauri, and the problems posed by the integration of an existing thesaurus. Broader aspects such as usability and system ergonomics are integrated in the examination as well.
  12. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.01
    0.01404969 = product of:
      0.05619876 = sum of:
        0.040091753 = weight(_text_:libraries in 2419) [ClassicSimilarity], result of:
          0.040091753 = score(doc=2419,freq=4.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.30797386 = fieldWeight in 2419, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.01610701 = product of:
          0.03221402 = sum of:
            0.03221402 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
              0.03221402 = score(doc=2419,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.23214069 = fieldWeight in 2419, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2419)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    The digital library system Daffodil is targeted at strategic support of users during the information search process. For searching, exploring and managing digital library objects it provides user-customisable information seeking patterns over a federation of heterogeneous digital libraries. In this paper evaluation results with respect to retrieval effectiveness, efficiency and user satisfaction are presented. The analysis focuses on strategic support for the scientific work-flow. Daffodil supports the whole work-flow, from data source selection over information seeking to the representation, organisation and reuse of information. By embedding high level search functionality into the scientific work-flow, the user experiences better strategic system support due to a more systematic work process. These ideas have been implemented in Daffodil followed by a qualitative evaluation. The evaluation has been conducted with 28 participants, ranging from information seeking novices to experts. The results are promising, as they support the chosen model.
    Date
    16.11.2008 16:22:48
    Source
    Research and advanced technology for digital libraries : 8th European conference, ECDL 2004, Bath, UK, September 12-17, 2004 : proceedings. Eds.: Heery, R. u. E. Lyon
  13. Shiri, A.A.; Revie, C.: Query expansion behavior within a thesaurus-enhanced search environment : a user-centered evaluation (2006) 0.01
    0.013933806 = product of:
      0.055735223 = sum of:
        0.042312715 = weight(_text_:case in 56) [ClassicSimilarity], result of:
          0.042312715 = score(doc=56,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 56, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
        0.013422508 = product of:
          0.026845016 = sum of:
            0.026845016 = weight(_text_:22 in 56) [ClassicSimilarity], result of:
              0.026845016 = score(doc=56,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.19345059 = fieldWeight in 56, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=56)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    The study reported here investigated the query expansion behavior of end-users interacting with a thesaurus-enhanced search system on the Web. Two groups, namely academic staff and postgraduate students, were recruited into this study. Data were collected from 90 searches performed by 30 users using the OVID interface to the CAB abstracts database. Data-gathering techniques included questionnaires, screen capturing software, and interviews. The results presented here relate to issues of search-topic and search-term characteristics, number and types of expanded queries, usefulness of thesaurus terms, and behavioral differences between academic staff and postgraduate students in their interaction. The key conclusions drawn were that (a) academic staff chose more narrow and synonymous terms than did postgraduate students, who generally selected broader and related terms; (b) topic complexity affected users' interaction with the thesaurus in that complex topics required more query expansion and search term selection; (c) users' prior topic-search experience appeared to have a significant effect on their selection and evaluation of thesaurus terms; (d) in 50% of the searches where additional terms were suggested from the thesaurus, users stated that they had not been aware of the terms at the beginning of the search; this observation was particularly noticeable in the case of postgraduate students.
    Date
    22. 7.2006 16:32:43
  14. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.01
    0.01296638 = product of:
      0.05186552 = sum of:
        0.03307401 = weight(_text_:libraries in 1026) [ClassicSimilarity], result of:
          0.03307401 = score(doc=1026,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.25406548 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.018791512 = product of:
          0.037583023 = sum of:
            0.037583023 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.037583023 = score(doc=1026,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  15. Caro Castro, C.; Travieso Rodríguez, C.: Ariadne's thread : knowledge structures for browsing in OPAC's (2003) 0.01
    0.011538977 = product of:
      0.046155907 = sum of:
        0.016537005 = weight(_text_:libraries in 2768) [ClassicSimilarity], result of:
          0.016537005 = score(doc=2768,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.12703274 = fieldWeight in 2768, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2768)
        0.029618902 = weight(_text_:case in 2768) [ClassicSimilarity], result of:
          0.029618902 = score(doc=2768,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.17000891 = fieldWeight in 2768, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2768)
      0.25 = coord(2/8)
    
    Abstract
    Subject searching is the most common but also the most conflictive searching for end user. The aim of this paper is to check how users expressions match subject headings and to prove if knowledge structure used in online catalogs enhances searching effectiveness. A bibliographic revision about difficulties in subject access and proposed methods to improve it is also presented. For the empirical analysis, transaction logs from two university libraries, online catalogs (CISNE and FAMA) were collected. Results show that more than a quarter of user queries are effective due to an alphabetical subject index approach and browsing through hypertextual links. 1. Introduction Since the 1980's, online public access catalogs (OPAC's) have become usual way to access bibliographic information. During the last two decades the technological development has helped to extend their use, making feasible the access for a whole of users that is getting more and more extensive and heterogeneous, and also to incorporate information resources in electronic formats and to interconnect systems. However, technology seems to have developed faster than our knowledge about the tasks where it has been applied and than the evolution of our capacities for adapting to it. The conceptual model of OPAC has been hardly modified recently, and for interacting with them, users still need to combine the same skills and basic knowledge than at the beginning of its introduction (Borgman, 1986, 2000): a) conceptual knowledge to translate the information need into an appropriate query because of a well-designed mental model of the system, b) semantic and syntactic knowledge to be able to implement that query (access fields, searching type, Boolean logic, etc.) and c) basic technical skills in computing. At present many users have the essential technical skills to make use, with more or less expertise, of a computer. This number is substantially reduced when it is referred to the conceptual, semantic and syntactic knowledge that is necessary to achieve a moderately satisfactory search. An added difficulty arises in subject searching, as users should concrete their unknown information needs in terms that the information retrieval system can understand. Many researches have focused an unskilled searchers' difficulties to enter an effective query. The mental models influence, users assumption about characteristics, structure, contents and operation of the system they interact with have been analysed (Dillon, 2000; Dimitroff, 2000). Another issue that implies difficulties is vocabulary: how to find the right terms to implement a query and to modify it as the case may be. Terminology and expressions characteristics used in searching (Bates, 1993), the match between user terms and the subject headings from the catalog (Carlyle, 1989; Drabensttot, 1996; Drabensttot & Vizine-Goetz, 1994), the incidence of spelling errors (Drabensttot and Weller, 1996; Ferl and Millsap, 1996; Walker and Jones, 1987), users problems
  16. Looking for information : a survey on research on information seeking, needs, and behavior (2012) 0.01
    0.010578179 = product of:
      0.08462543 = sum of:
        0.08462543 = weight(_text_:case in 3802) [ClassicSimilarity], result of:
          0.08462543 = score(doc=3802,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.48573974 = fieldWeight in 3802, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.078125 = fieldNorm(doc=3802)
      0.125 = coord(1/8)
    
    Editor
    Case, D.O.
  17. Prasad, A.R.D.; Madalli, D.P.: Faceted infrastructure for semantic digital libraries (2008) 0.01
    0.009338322 = product of:
      0.07470658 = sum of:
        0.07470658 = weight(_text_:libraries in 1905) [ClassicSimilarity], result of:
          0.07470658 = score(doc=1905,freq=20.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.5738754 = fieldWeight in 1905, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
      0.125 = coord(1/8)
    
    Abstract
    Purpose - The paper aims to argue that digital library retrieval should be based on semantic representations and propose a semantic infrastructure for digital libraries. Design/methodology/approach - The approach taken is formal model based on subject representation for digital libraries. Findings - Search engines and search techniques have fallen short of user expectations as they do not give context based retrieval. Deploying semantic web technologies would lead to efficient and more precise representation of digital library content and hence better retrieval. Though digital libraries often have metadata of information resources which can be accessed through OAI-PMH, much remains to be accomplished in making digital libraries semantic web compliant. This paper presents a semantic infrastructure for digital libraries, that will go a long way in providing them and web based information services with products highly customised to users needs. Research limitations/implications - Here only a model for semantic infrastructure is proposed. This model is proposed after studying current user-centric, top-down models adopted in digital library service architectures. Originality/value - This paper gives a generic model for building semantic infrastructure for digital libraries. Faceted ontologies for digital libraries is just one approach. But the same may be adopted by groups working with different approaches in building ontologies to realise efficient retrieval in digital libraries.
    Footnote
    Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
  18. Lin, J.; DiCuccio, M.; Grigoryan, V.; Wilbur, W.J.: Navigating information spaces : a case study of related article search in PubMed (2008) 0.01
    0.008975883 = product of:
      0.071807064 = sum of:
        0.071807064 = weight(_text_:case in 2124) [ClassicSimilarity], result of:
          0.071807064 = score(doc=2124,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 2124, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=2124)
      0.125 = coord(1/8)
    
    Abstract
    The concept of an "information space" provides a powerful metaphor for guiding the design of interactive retrieval systems. We present a case study of related article search, a browsing tool designed to help users navigate the information space defined by results of the PubMed® search engine. This feature leverages content-similarity links that tie MEDLINE® citations together in a vast document network. We examine the effectiveness of related article search from two perspectives: a topological analysis of networks generated from information needs represented in the TREC 2005 genomics track and a query log analysis of real PubMed users. Together, data suggest that related article search is a useful feature and that browsing related articles has become an integral part of how users interact with PubMed.
  19. Vidinli, I.B.; Ozcan, R.: New query suggestion framework and algorithms : a case study for an educational search engine (2016) 0.01
    0.008975883 = product of:
      0.071807064 = sum of:
        0.071807064 = weight(_text_:case in 3185) [ClassicSimilarity], result of:
          0.071807064 = score(doc=3185,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 3185, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=3185)
      0.125 = coord(1/8)
    
    Abstract
    Query suggestion is generally an integrated part of web search engines. In this study, we first redefine and reduce the query suggestion problem as "comparison of queries". We then propose a general modular framework for query suggestion algorithm development. We also develop new query suggestion algorithms which are used in our proposed framework, exploiting query, session and user features. As a case study, we use query logs of a real educational search engine that targets K-12 students in Turkey. We also exploit educational features (course, grade) in our query suggestion algorithms. We test our framework and algorithms over a set of queries by an experiment and demonstrate a 66-90% statistically significant increase in relevance of query suggestions compared to a baseline method.
  20. Sanfilippo, M.; Yang, S.; Fichman, P.: Trolling here, there, and everywhere : perceptions of trolling behaviors in context (2017) 0.01
    0.008975883 = product of:
      0.071807064 = sum of:
        0.071807064 = weight(_text_:case in 3823) [ClassicSimilarity], result of:
          0.071807064 = score(doc=3823,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 3823, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=3823)
      0.125 = coord(1/8)
    
    Abstract
    Online trolling has become increasingly prevalent and visible in online communities. Perceptions of and reactions to trolling behaviors varies significantly from one community to another, as trolling behaviors are contextual and vary across platforms and communities. Through an examination of seven trolling scenarios, this article intends to answer the following questions: how do trolling behaviors differ across contexts; how do perceptions of trolling differ from case to case; and what aspects of context of trolling are perceived to be important by the public? Based on focus groups and interview data, we discuss the ways in which community norms and demographics, technological features of platforms, and community boundaries are perceived to impact trolling behaviors. Two major contributions of the study include a codebook to support future analysis of trolling and formal concept analysis surrounding contextual perceptions of trolling.

Years

Languages

  • e 75
  • d 4
  • More… Less…

Types

  • a 69
  • el 12
  • m 7
  • s 1
  • More… Less…