Search (3 results, page 1 of 1)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × theme_ss:"Visualisierung"
  1. Zhang, J.; Mostafa, J.; Tripathy, H.: Information retrieval by semantic analysis and visualization of the concept space of D-Lib® magazine (2002) 0.01
    0.008706411 = product of:
      0.034825645 = sum of:
        0.011812146 = weight(_text_:libraries in 1211) [ClassicSimilarity], result of:
          0.011812146 = score(doc=1211,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.09073767 = fieldWeight in 1211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1211)
        0.0230135 = product of:
          0.046027 = sum of:
            0.046027 = weight(_text_:area in 1211) [ClassicSimilarity], result of:
              0.046027 = score(doc=1211,freq=6.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.23572728 = fieldWeight in 1211, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1211)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    From the user's perspective, however, it is still difficult to use current information retrieval systems. Users frequently have problems expressing their information needs and translating those needs into queries. This is partly due to the fact that information needs cannot be expressed appropriately in systems terms. It is not unusual for users to input search terms that are different from the index terms information systems use. Various methods have been proposed to help users choose search terms and articulate queries. One widely used approach is to incorporate into the information system a thesaurus-like component that represents both the important concepts in a particular subject area and the semantic relationships among those concepts. Unfortunately, the development and use of thesauri is not without its own problems. The thesaurus employed in a specific information system has often been developed for a general subject area and needs significant enhancement to be tailored to the information system where it is to be used. This thesaurus development process, if done manually, is both time consuming and labor intensive. Usage of a thesaurus in searching is complex and may raise barriers for the user. For illustration purposes, let us consider two scenarios of thesaurus usage. In the first scenario the user inputs a search term and the thesaurus then displays a matching set of related terms. Without an overview of the thesaurus - and without the ability to see the matching terms in the context of other terms - it may be difficult to assess the quality of the related terms in order to select the correct term. In the second scenario the user browses the whole thesaurus, which is organized as in an alphabetically ordered list. The problem with this approach is that the list may be long, and neither does it show users the global semantic relationship among all the listed terms.
    Nevertheless, because thesaurus use has shown to improve retrieval, for our method we integrate functions in the search interface that permit users to explore built-in search vocabularies to improve retrieval from digital libraries. Our method automatically generates the terms and their semantic relationships representing relevant topics covered in a digital library. We call these generated terms the "concepts", and the generated terms and their semantic relationships we call the "concept space". Additionally, we used a visualization technique to display the concept space and allow users to interact with this space. The automatically generated term set is considered to be more representative of subject area in a corpus than an "externally" imposed thesaurus, and our method has the potential of saving a significant amount of time and labor for those who have been manually creating thesauri as well. Information visualization is an emerging discipline and developed very quickly in the last decade. With growing volumes of documents and associated complexities, information visualization has become increasingly important. Researchers have found information visualization to be an effective way to use and understand information while minimizing a user's cognitive load. Our work was based on an algorithmic approach of concept discovery and association. Concepts are discovered using an algorithm based on an automated thesaurus generation procedure. Subsequently, similarities among terms are computed using the cosine measure, and the associations among terms are established using a method known as max-min distance clustering. The concept space is then visualized in a spring embedding graph, which roughly shows the semantic relationships among concepts in a 2-D visual representation. The semantic space of the visualization is used as a medium for users to retrieve the desired documents. In the remainder of this article, we present our algorithmic approach of concept generation and clustering, followed by description of the visualization technique and interactive interface. The paper ends with key conclusions and discussions on future work.
  2. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.01
    0.0052890894 = product of:
      0.042312715 = sum of:
        0.042312715 = weight(_text_:case in 3366) [ClassicSimilarity], result of:
          0.042312715 = score(doc=3366,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 3366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3366)
      0.125 = coord(1/8)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  3. Hoeber, O.: ¬A study of visually linked keywords to support exploratory browsing in academic search (2022) 0.00
    0.0035436437 = product of:
      0.02834915 = sum of:
        0.02834915 = weight(_text_:libraries in 644) [ClassicSimilarity], result of:
          0.02834915 = score(doc=644,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 644, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=644)
      0.125 = coord(1/8)
    
    Abstract
    While the search interfaces used by common academic digital libraries provide easy access to a wealth of peer-reviewed literature, their interfaces provide little support for exploratory browsing. When faced with a complex search task (such as one that requires knowledge discovery), exploratory browsing is an important first step in an exploratory search process. To more effectively support exploratory browsing, we have designed and implemented a novel academic digital library search interface (KLink Search) with two new features: visually linked keywords and an interactive workspace. To study the potential value of these features, we have conducted a controlled laboratory study with 32 participants, comparing KLink Search to a baseline digital library search interface modeled after that used by IEEE Xplore. Based on subjective opinions, objective performance, and behavioral data, we show the value of adding lightweight visual and interactive features to academic digital library search interfaces to support exploratory browsing.