Search (296 results, page 1 of 15)

  • × theme_ss:"Suchmaschinen"
  1. Li, L.; Shang, Y.; Zhang, W.: Improvement of HITS-based algorithms on Web documents 0.22
    0.2238737 = product of:
      0.59699655 = sum of:
        0.06293926 = product of:
          0.18881777 = sum of:
            0.18881777 = weight(_text_:3a in 2514) [ClassicSimilarity], result of:
              0.18881777 = score(doc=2514,freq=2.0), product of:
                0.3359639 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03962768 = queryNorm
                0.56201804 = fieldWeight in 2514, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2514)
          0.33333334 = coord(1/3)
        0.26702866 = weight(_text_:2f in 2514) [ClassicSimilarity], result of:
          0.26702866 = score(doc=2514,freq=4.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.7948135 = fieldWeight in 2514, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=2514)
        0.26702866 = weight(_text_:2f in 2514) [ClassicSimilarity], result of:
          0.26702866 = score(doc=2514,freq=4.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.7948135 = fieldWeight in 2514, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=2514)
      0.375 = coord(3/8)
    
    Content
    Vgl.: http%3A%2F%2Fdelab.csd.auth.gr%2F~dimitris%2Fcourses%2Fir_spring06%2Fpage_rank_computing%2Fp527-li.pdf. Vgl. auch: http://www2002.org/CDROM/refereed/643/.
  2. Brophy, J.; Bawden, D.: Is Google enough? : Comparison of an internet search engine with academic library resources (2005) 0.06
    0.058981746 = product of:
      0.15728466 = sum of:
        0.023624292 = weight(_text_:libraries in 648) [ClassicSimilarity], result of:
          0.023624292 = score(doc=648,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 648, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=648)
        0.07328778 = weight(_text_:case in 648) [ClassicSimilarity], result of:
          0.07328778 = score(doc=648,freq=6.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.420663 = fieldWeight in 648, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=648)
        0.06037259 = weight(_text_:studies in 648) [ClassicSimilarity], result of:
          0.06037259 = score(doc=648,freq=6.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.3818022 = fieldWeight in 648, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=648)
      0.375 = coord(3/8)
    
    Abstract
    Purpose - The purpose of the study was to compare an internet search engine, Google, with appropriate library databases and systems, in order to assess the relative value, strengths and weaknesses of the two sorts of system. Design/methodology/approach - A case study approach was used, with detailed analysis and failure checking of results. The performance of the two systems was assessed in terms of coverage, unique records, precision, and quality and accessibility of results. A novel form of relevance assessment, based on the work of Saracevic and others was devised. Findings - Google is superior for coverage and accessibility. Library systems are superior for quality of results. Precision is similar for both systems. Good coverage requires use of both, as both have many unique items. Improving the skills of the searcher is likely to give better results from the library systems, but not from Google. Research limitations/implications - Only four case studies were included. These were limited to the kind of queries likely to be searched by university students. Library resources were limited to those in two UK academic libraries. Only the basic Google web search functionality was used, and only the top ten records examined. Practical implications - The results offer guidance for those providing support and training for use of these retrieval systems, and also provide evidence for debates on the "Google phenomenon". Originality/value - This is one of the few studies which provide evidence on the relative performance of internet search engines and library databases, and the only one to conduct such in-depth case studies. The method for the assessment of relevance is novel.
  3. Thelwall, M.: Assessing web search engines : a webometric approach (2011) 0.05
    0.046684146 = product of:
      0.12449105 = sum of:
        0.05077526 = weight(_text_:case in 10) [ClassicSimilarity], result of:
          0.05077526 = score(doc=10,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 10, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=10)
        0.04182736 = weight(_text_:studies in 10) [ClassicSimilarity], result of:
          0.04182736 = score(doc=10,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 10, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=10)
        0.031888437 = product of:
          0.06377687 = sum of:
            0.06377687 = weight(_text_:area in 10) [ClassicSimilarity], result of:
              0.06377687 = score(doc=10,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32663327 = fieldWeight in 10, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.046875 = fieldNorm(doc=10)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Information Retrieval (IR) research typically evaluates search systems in terms of the standard precision, recall and F-measures to weight the relative importance of precision and recall (e.g. van Rijsbergen, 1979). All of these assess the extent to which the system returns good matches for a query. In contrast, webometric measures are designed specifically for web search engines and are designed to monitor changes in results over time and various aspects of the internal logic of the way in which search engine select the results to be returned. This chapter introduces a range of webometric measurements and illustrates them with case studies of Google, Bing and Yahoo! This is a very fertile area for simple and complex new investigations into search engine results.
  4. MacLeod, R.: Promoting a subject gateway : a case study from EEVL (Edinburgh Engineering Virtual Library) (2000) 0.04
    0.039410755 = product of:
      0.15764302 = sum of:
        0.11967843 = weight(_text_:case in 4872) [ClassicSimilarity], result of:
          0.11967843 = score(doc=4872,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.6869397 = fieldWeight in 4872, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.078125 = fieldNorm(doc=4872)
        0.037964586 = product of:
          0.07592917 = sum of:
            0.07592917 = weight(_text_:22 in 4872) [ClassicSimilarity], result of:
              0.07592917 = score(doc=4872,freq=4.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.54716086 = fieldWeight in 4872, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4872)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Describes the development of EEVL and outlines the services offered. The potential market for EEVL is discussed, and a case study of promotional activities is presented
    Date
    22. 6.2002 19:40:22
  5. Bar-Ilan, J.: Evaluating the stability of the search tools Hotbot and Snap : a case study (2000) 0.03
    0.03314337 = product of:
      0.13257349 = sum of:
        0.0837749 = weight(_text_:case in 1180) [ClassicSimilarity], result of:
          0.0837749 = score(doc=1180,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.48085782 = fieldWeight in 1180, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1180)
        0.048798583 = weight(_text_:studies in 1180) [ClassicSimilarity], result of:
          0.048798583 = score(doc=1180,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.30860704 = fieldWeight in 1180, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1180)
      0.25 = coord(2/8)
    
    Abstract
    Discusses the results of a case study in which 20 random queries were presented for ten consecutive days to Hotbot and Snap, two search tools that draw their results from the database of Inktomi. The results show huge daily fluctuations in the number of hits retrieved by Hotbot, and high stability in the hits displayed by Snap. These findings are to alert users of Hotbot of its instability as of October 1999, and they raise questions about the reliability of previous studies estimating the size of Hotbot based on its overlap with other search engines.
  6. El-Ramly, N.; Peterson. R.E.; Volonino, L.: Top ten Web sites using search engines : the case of the desalination industry (1996) 0.03
    0.028408606 = product of:
      0.11363442 = sum of:
        0.071807064 = weight(_text_:case in 945) [ClassicSimilarity], result of:
          0.071807064 = score(doc=945,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 945, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
        0.04182736 = weight(_text_:studies in 945) [ClassicSimilarity], result of:
          0.04182736 = score(doc=945,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 945, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
      0.25 = coord(2/8)
    
    Abstract
    The desalination industry involves the desalting of sea or brackish water and achieves the purpose of increasing the worls's effective water supply. There are approximately 4.000 desalination Web sites. The six major Internet search engines were used to determine, according to each of the six, the top twenty sites for desalination. Each site was visited and the 120 gross returns were pared down to the final ten - the 'Top Ten'. The Top Ten were then analyzed to determine what it was that made the sites useful and informative. The major attributes were: a) currency (up-to-date); b) search site capability; c) access to articles on desalination; d) newsletters; e) databases; f) product information; g) online conferencing; h) valuable links to other sites; l) communication links; j) site maps; and k) case studies. Reasons for having a Web site and the current status and prospects for Internet commerce are discussed
  7. Couvering, E. van: ¬The economy of navigation : search engines, search optimisation and search results (2007) 0.03
    0.028006244 = product of:
      0.11202498 = sum of:
        0.042312715 = weight(_text_:case in 379) [ClassicSimilarity], result of:
          0.042312715 = score(doc=379,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 379, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=379)
        0.06971227 = weight(_text_:studies in 379) [ClassicSimilarity], result of:
          0.06971227 = score(doc=379,freq=8.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.44086722 = fieldWeight in 379, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=379)
      0.25 = coord(2/8)
    
    Abstract
    The political economy of communication focuses critically on what structural issues in mass media - ownership, labour practices, professional ethics, and so on - mean for products of those mass media and thus for society more generally. In the case of new media, recent political economic studies have looked at the technical infrastructure of the Internet and also at Internet usage. However, political economic studies of internet content are only beginning. Recent studies on the phenomenology of the Web, that is, the way the Web is experienced from an individual user's perspective, highlight the centrality of the search engine to most users' experiences of the Web, particularly when they venture beyond familiar Web sites. Search engines are therefore an obvi ous place to begin the analysis of Web content. An important assumption of this chapter is that internet search engines are media businesses and that the tools developed in media studies can be profitably brought to bear on them. This focus on search engine as industry comes from the critical tradition of the political economy of communications in rejecting the notion that the market alone should be the arbiter of the structure of the media industry, as might be appropriate for other types of products.
  8. Taylor, M.: Using the Google search appliance for federated searching : a case study (2005) 0.03
    0.026374804 = product of:
      0.105499215 = sum of:
        0.037798867 = weight(_text_:libraries in 355) [ClassicSimilarity], result of:
          0.037798867 = score(doc=355,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.29036054 = fieldWeight in 355, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0625 = fieldNorm(doc=355)
        0.06770035 = weight(_text_:case in 355) [ClassicSimilarity], result of:
          0.06770035 = score(doc=355,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.3885918 = fieldWeight in 355, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0625 = fieldNorm(doc=355)
      0.25 = coord(2/8)
    
    Source
    Libraries and Google. Eds.: Miller, W. u. R.M. Pellen
  9. Vidmar, D.J.: Darwin on the Web : the evolution of search tools (1999) 0.03
    0.02593276 = product of:
      0.10373104 = sum of:
        0.06614802 = weight(_text_:libraries in 3175) [ClassicSimilarity], result of:
          0.06614802 = score(doc=3175,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.50813097 = fieldWeight in 3175, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.109375 = fieldNorm(doc=3175)
        0.037583023 = product of:
          0.07516605 = sum of:
            0.07516605 = weight(_text_:22 in 3175) [ClassicSimilarity], result of:
              0.07516605 = score(doc=3175,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.5416616 = fieldWeight in 3175, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3175)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Source
    Computers in libraries. 19(1999) no.5, S.22-28
  10. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.03
    0.02557259 = product of:
      0.06819358 = sum of:
        0.016537005 = weight(_text_:libraries in 2752) [ClassicSimilarity], result of:
          0.016537005 = score(doc=2752,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.12703274 = fieldWeight in 2752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.042260814 = weight(_text_:studies in 2752) [ClassicSimilarity], result of:
          0.042260814 = score(doc=2752,freq=6.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26726153 = fieldWeight in 2752, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.009395756 = product of:
          0.018791512 = sum of:
            0.018791512 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
              0.018791512 = score(doc=2752,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.1354154 = fieldWeight in 2752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2752)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    The doctoral thesis of Tatiana Gossen formulates criteria and guidelines on how to design the user interfaces of search engines for children. In her work, the author identifies the conceptual challenges based on own and previous user studies and addresses the changing characteristics of the users by providing a means of adaptation. Additionally, a novel type of search result visualisation for children with cartoon style characters is developed taking children's preference for visual information into account.
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
  11. Lossau, N.: Search engine technology and digital libraries : libraries need to discover the academic internet (2004) 0.02
    0.02362226 = product of:
      0.09448904 = sum of:
        0.057285864 = weight(_text_:libraries in 1161) [ClassicSimilarity], result of:
          0.057285864 = score(doc=1161,freq=6.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.4400543 = fieldWeight in 1161, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1161)
        0.037203178 = product of:
          0.074406356 = sum of:
            0.074406356 = weight(_text_:area in 1161) [ClassicSimilarity], result of:
              0.074406356 = score(doc=1161,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.38107216 = fieldWeight in 1161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1161)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    With the development of the World Wide Web, the "information search" has grown to be a significant business sector of a global, competitive and commercial market. Powerful players have entered this market, such as commercial internet search engines, information portals, multinational publishers and online content integrators. Will Google, Yahoo or Microsoft be the only portals to global knowledge in 2010? If libraries do not want to become marginalized in a key area of their traditional services, they need to acknowledge the challenges that come with the globalisation of scholarly information, the existence and further growth of the academic internet
  12. Lewandowski, D.: Evaluating the retrieval effectiveness of web search engines using a representative query sample (2015) 0.02
    0.023150655 = product of:
      0.09260262 = sum of:
        0.05077526 = weight(_text_:case in 2157) [ClassicSimilarity], result of:
          0.05077526 = score(doc=2157,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 2157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=2157)
        0.04182736 = weight(_text_:studies in 2157) [ClassicSimilarity], result of:
          0.04182736 = score(doc=2157,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 2157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=2157)
      0.25 = coord(2/8)
    
    Abstract
    Search engine retrieval effectiveness studies are usually small scale, using only limited query samples. Furthermore, queries are selected by the researchers. We address these issues by taking a random representative sample of 1,000 informational and 1,000 navigational queries from a major German search engine and comparing Google's and Bing's results based on this sample. Jurors were found through crowdsourcing, and data were collected using specialized software, the Relevance Assessment Tool (RAT). We found that although Google outperforms Bing in both query types, the difference in the performance for informational queries was rather low. However, for navigational queries, Google found the correct answer in 95.3% of cases, whereas Bing only found the correct answer 76.6% of the time. We conclude that search engine performance on navigational queries is of great importance, because users in this case can clearly identify queries that have returned correct results. So, performance on this query type may contribute to explaining user satisfaction with search engines.
  13. Sandler, M.: Disruptive beneficence : the Google Print program and the future of libraries (2005) 0.02
    0.021736393 = product of:
      0.08694557 = sum of:
        0.065469556 = weight(_text_:libraries in 208) [ClassicSimilarity], result of:
          0.065469556 = score(doc=208,freq=6.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.5029192 = fieldWeight in 208, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0625 = fieldNorm(doc=208)
        0.021476014 = product of:
          0.042952027 = sum of:
            0.042952027 = weight(_text_:22 in 208) [ClassicSimilarity], result of:
              0.042952027 = score(doc=208,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.30952093 = fieldWeight in 208, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=208)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Libraries must learn to accommodate themselves to Google, and complement its mass digitization efforts with niche digitization of our own. We need to plan for what our activities and services will look like when our primary activity is no longer the storage and circulation of widely-available print materials, and once the printed book is no longer the only major vehicle for scholarly communication.
    Pages
    S.5-22
    Source
    Libraries and Google. Eds.: Miller, W. u. R.M. Pellen
  14. Thelwall, M.: Directing students to new information types : a new role for Google in literature searches? (2005) 0.02
    0.020994222 = product of:
      0.08397689 = sum of:
        0.04677371 = weight(_text_:libraries in 364) [ClassicSimilarity], result of:
          0.04677371 = score(doc=364,freq=4.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.35930282 = fieldWeight in 364, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=364)
        0.037203178 = product of:
          0.074406356 = sum of:
            0.074406356 = weight(_text_:area in 364) [ClassicSimilarity], result of:
              0.074406356 = score(doc=364,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.38107216 = fieldWeight in 364, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=364)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Conducting a literature review is an important activity for postgraduates and many undergraduates. Librarians can play an important role, directing students to digital libraries, compiling online subject reSource lists, and educating about the need to evaluate the quality of online resources. In order to conduct an effective literature search in a new area, however, in some subjects it is necessary to gain basic topic knowledge, including specialist vocabularies. Google's link-based page ranking algorithm makes this search engine an ideal tool for finding specialist topic introductory material, particularly in computer science, and so librarians should be teaching this as part of a strategic literature review approach.
    Source
    Libraries and Google. Eds.: Miller, W. u. R.M. Pellen
  15. York, M.C.: Calling the scholars home : Google Scholar as a tool for rediscovering the academic library (2005) 0.02
    0.02046815 = product of:
      0.0818726 = sum of:
        0.03307401 = weight(_text_:libraries in 361) [ClassicSimilarity], result of:
          0.03307401 = score(doc=361,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.25406548 = fieldWeight in 361, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=361)
        0.048798583 = weight(_text_:studies in 361) [ClassicSimilarity], result of:
          0.048798583 = score(doc=361,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.30860704 = fieldWeight in 361, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0546875 = fieldNorm(doc=361)
      0.25 = coord(2/8)
    
    Abstract
    Library guides to Google Scholar reveal the concerns and fears of librarians as they watch their users slip further and further outside of their domain of influence. Comparing these fears against data from recent surveys and studies of students and faculty suggests that a profound change in the role of the library in relation to how users search for and discover information has been underway for some time, and that Google Scholar is only the most recent and visible manifestation of that revolution.
    Source
    Libraries and Google. Eds.: Miller, W. u. R.M. Pellen
  16. Chau, M.; Fang, X.; Sheng, O.R.U.: Analysis of the query logs of a Web site search engine (2005) 0.02
    0.018966928 = product of:
      0.07586771 = sum of:
        0.049294014 = weight(_text_:studies in 4573) [ClassicSimilarity], result of:
          0.049294014 = score(doc=4573,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.3117402 = fieldWeight in 4573, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.0265737 = product of:
          0.0531474 = sum of:
            0.0531474 = weight(_text_:area in 4573) [ClassicSimilarity], result of:
              0.0531474 = score(doc=4573,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.27219442 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    A large number of studies have investigated the transaction log of general-purpose search engines such as Excite and AItaVista, but few studies have reported an the analysis of search logs for search engines that are limited to particular Web sites, namely, Web site search engines. In this article, we report our research an analyzing the search logs of the search engine of the Utah state government Web site. Our results show that some statistics, such as the number of search terms per query, of Web users are the same for general-purpose search engines and Web site search engines, but others, such as the search topics and the terms used, are considerably different. Possible reasons for the differences include the focused domain of Web site search engines and users' different information needs. The findings are useful for Web site developers to improve the performance of their services provided an the Web and for researchers to conduct further research in this area. The analysis also can be applied in e-government research by investigating how information should be delivered to users in government Web sites.
  17. Stacey, Alison; Stacey, Adrian: Effective information retrieval from the Internet : an advanced user's guide (2004) 0.02
    0.01893907 = product of:
      0.07575628 = sum of:
        0.047871374 = weight(_text_:case in 4497) [ClassicSimilarity], result of:
          0.047871374 = score(doc=4497,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.2747759 = fieldWeight in 4497, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=4497)
        0.027884906 = weight(_text_:studies in 4497) [ClassicSimilarity], result of:
          0.027884906 = score(doc=4497,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.17634688 = fieldWeight in 4497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03125 = fieldNorm(doc=4497)
      0.25 = coord(2/8)
    
    Content
    Key Features - Importantly, the book enables readers to develop strategies which will continue to be useful despite the rapidly-evolving state of the Internet and Internet technologies - it is not about technological `tricks'. - Enables readers to be aware of and compensate for bias and errors which are ubiquitous an the Internet. - Provides contemporary information an the deficiencies in web skills of novice users as well as practical techniques for teaching such users. The Authors Dr Alison Stacey works at the Learning Resource Centre, Cambridge Regional College. Dr Adrian Stacey, formerly based at Cambridge University, is a software programmer. Readership The book is aimed at a wide range of librarians and other information professionals who need to retrieve information from the Internet efficiently, to evaluate their confidence in the information they retrieve and/or to train others to use the Internet. It is primarily aimed at intermediate to advanced users of the Internet. Contents Fundamentals of information retrieval from the Internet - why learn web searching technique; types of information requests; patterns for information retrieval; leveraging the technology: Search term choice: pinpointing information an the web - why choose queries carefully; making search terms work together; how to pick search terms; finding the 'unfindable': Blas an the Internet - importance of bias; sources of bias; usergenerated bias: selecting information with which you already agree; assessing and compensating for bias; case studies: Query reformulation and longer term strategies - how to interact with your search engine; foraging for information; long term information retrieval: using the Internet to find trends; automating searches: how to make your machine do your work: Assessing the quality of results- how to assess and ensure quality: The novice user and teaching internet skills - novice users and their problems with the web; case study: research in a college library; interpreting 'second hand' web information.
  18. Landoni, M.; Bell, S.: Information retrieval techniques for evaluating search engines : a critical overview (2000) 0.02
    0.018428948 = product of:
      0.07371579 = sum of:
        0.04182736 = weight(_text_:studies in 716) [ClassicSimilarity], result of:
          0.04182736 = score(doc=716,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 716, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=716)
        0.031888437 = product of:
          0.06377687 = sum of:
            0.06377687 = weight(_text_:area in 716) [ClassicSimilarity], result of:
              0.06377687 = score(doc=716,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32663327 = fieldWeight in 716, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.046875 = fieldNorm(doc=716)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    The objective of this paper is to highlight the importance of a scientifically sounded approach to search engine evaluation. Nowadays there is a flourishing literature which describes various attempts at conducting such evaluation by following all sort of approaches, but very often only the final results are published with little, if any, information about the methodology and the procedures adopted. These various experiments have been critically investigated and catalogued according to their scientific foundation by Bell [1] in the attempt to provide a valuable framework for future studies in this area. This paper reconsiders some of Bell's ideas in the light of the crisis of classic evaluation techniques for information retrieval and tries to envisage some form of collaboration between the IR and web communities in order to design a better and more consistent platform for the evaluation of tools for interactive information retrieval.
  19. Slone, D.J.: ¬The impact of time constraints on Internet and Web use (2007) 0.02
    0.018428948 = product of:
      0.07371579 = sum of:
        0.04182736 = weight(_text_:studies in 431) [ClassicSimilarity], result of:
          0.04182736 = score(doc=431,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=431)
        0.031888437 = product of:
          0.06377687 = sum of:
            0.06377687 = weight(_text_:area in 431) [ClassicSimilarity], result of:
              0.06377687 = score(doc=431,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32663327 = fieldWeight in 431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.046875 = fieldNorm(doc=431)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    This study examines the influence of time constraints on Internet and Web search goals and search behavior. Specifically, it looks at the searching behavior of public library Internet users who, previously limited to 30 minutes per Internet session, are given an unlimited amount of time for use. Interviews and observations were conducted with 34 participants searching on their own queries. Despite an increase in the time allowed for searching, most people spent less than 30 minutes on the Internet, carrying out tasks like paying bills, shopping, browsing, and making reservations. Those who took more than 30 minutes were looking for jobs or browsing. E-mail use was universal. In this context, influences like time-dependent and time-independent tasks, use of search hubs to perform more efficient searches, and search diversity were recorded. Though there are a number of large and small studies of Internet and Web use, few of them focus on temporal influences. This study extends knowledge in this area of inquiry.
  20. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.02
    0.018428948 = product of:
      0.07371579 = sum of:
        0.04182736 = weight(_text_:studies in 3161) [ClassicSimilarity], result of:
          0.04182736 = score(doc=3161,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 3161, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
        0.031888437 = product of:
          0.06377687 = sum of:
            0.06377687 = weight(_text_:area in 3161) [ClassicSimilarity], result of:
              0.06377687 = score(doc=3161,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32663327 = fieldWeight in 3161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3161)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.

Years

Languages

  • e 211
  • d 83
  • f 1
  • nl 1
  • More… Less…

Types

  • a 269
  • el 24
  • m 8
  • s 3
  • x 3
  • p 2
  • r 1
  • More… Less…