Search (10 results, page 1 of 1)

  • × theme_ss:"Visualisierung"
  • × type_ss:"el"
  1. Beagle, D.: Visualizing keyword distribution across multidisciplinary c-space (2003) 0.03
    0.025926981 = product of:
      0.06913862 = sum of:
        0.014174575 = weight(_text_:libraries in 1202) [ClassicSimilarity], result of:
          0.014174575 = score(doc=1202,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.1088852 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
        0.02538763 = weight(_text_:case in 1202) [ClassicSimilarity], result of:
          0.02538763 = score(doc=1202,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.14572193 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
        0.02957641 = weight(_text_:studies in 1202) [ClassicSimilarity], result of:
          0.02957641 = score(doc=1202,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.18704411 = fieldWeight in 1202, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
      0.375 = coord(3/8)
    
    Abstract
    The concept of c-space is proposed as a visualization schema relating containers of content to cataloging surrogates and classification structures. Possible applications of keyword vector clusters within c-space could include improved retrieval rates through the use of captioning within visual hierarchies, tracings of semantic bleeding among subclasses, and access to buried knowledge within subject-neutral publication containers. The Scholastica Project is described as one example, following a tradition of research dating back to the 1980's. Preliminary focus group assessment indicates that this type of classification rendering may offer digital library searchers enriched entry strategies and an expanded range of re-entry vocabularies. Those of us who work in traditional libraries typically assume that our systems of classification: Library of Congress Classification (LCC) and Dewey Decimal Classification (DDC), are descriptive rather than prescriptive. In other words, LCC classes and subclasses approximate natural groupings of texts that reflect an underlying order of knowledge, rather than arbitrary categories prescribed by librarians to facilitate efficient shelving. Philosophical support for this assumption has traditionally been found in a number of places, from the archetypal tree of knowledge, to Aristotelian categories, to the concept of discursive formations proposed by Michel Foucault. Gary P. Radford has elegantly described an encounter with Foucault's discursive formations in the traditional library setting: "Just by looking at the titles on the spines, you can see how the books cluster together...You can identify those books that seem to form the heart of the discursive formation and those books that reside on the margins. Moving along the shelves, you see those books that tend to bleed over into other classifications and that straddle multiple discursive formations. You can physically and sensually experience...those points that feel like state borders or national boundaries, those points where one subject ends and another begins, or those magical places where one subject has morphed into another..."
    But what happens to this awareness in a digital library? Can discursive formations be represented in cyberspace, perhaps through diagrams in a visualization interface? And would such a schema be helpful to a digital library user? To approach this question, it is worth taking a moment to reconsider what Radford is looking at. First, he looks at titles to see how the books cluster. To illustrate, I scanned one hundred books on the shelves of a college library under subclass HT 101-395, defined by the LCC subclass caption as Urban groups. The City. Urban sociology. Of the first 100 titles in this sequence, fifty included the word "urban" or variants (e.g. "urbanization"). Another thirty-five used the word "city" or variants. These keywords appear to mark their titles as the heart of this discursive formation. The scattering of titles not using "urban" or "city" used related terms such as "town," "community," or in one case "skyscrapers." So we immediately see some empirical correlation between keywords and classification. But we also see a problem with the commonly used search technique of title-keyword. A student interested in urban studies will want to know about this entire subclass, and may wish to browse every title available therein. A title-keyword search on "urban" will retrieve only half of the titles, while a search on "city" will retrieve just over a third. There will be no overlap, since no titles in this sample contain both words. The only place where both words appear in a common string is in the LCC subclass caption, but captions are not typically indexed in library Online Public Access Catalogs (OPACs). In a traditional library, this problem is mitigated when the student goes to the shelf looking for any one of the books and suddenly discovers a much wider selection than the keyword search had led him to expect. But in a digital library, the issue of non-retrieval can be more problematic, as studies have indicated. Micco and Popp reported that, in a study funded partly by the U.S. Department of Education, 65 of 73 unskilled users searching for material on U.S./Soviet foreign relations found some material but never realized they had missed a large percentage of what was in the database.
  2. Choi, I.: Visualizations of cross-cultural bibliographic classification : comparative studies of the Korean Decimal Classification and the Dewey Decimal Classification (2017) 0.02
    0.019292213 = product of:
      0.07716885 = sum of:
        0.042312715 = weight(_text_:case in 3869) [ClassicSimilarity], result of:
          0.042312715 = score(doc=3869,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 3869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3869)
        0.034856133 = weight(_text_:studies in 3869) [ClassicSimilarity], result of:
          0.034856133 = score(doc=3869,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.22043361 = fieldWeight in 3869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3869)
      0.25 = coord(2/8)
    
    Abstract
    The changes in KO systems induced by sociocultural influences may include those in both classificatory principles and cultural features. The proposed study will examine the Korean Decimal Classification (KDC)'s adaptation of the Dewey Decimal Classification (DDC) by comparing the two systems. This case manifests the sociocultural influences on KOSs in a cross-cultural context. Therefore, the study aims at an in-depth investigation of sociocultural influences by situating a KOS in a cross-cultural environment and examining the dynamics between two classification systems designed to organize information resources in two distinct sociocultural contexts. As a preceding stage of the comparison, the analysis was conducted on the changes that result from the meeting of different sociocultural feature in a descriptive method. The analysis aims to identify variations between the two schemes in comparison of the knowledge structures of the two classifications, in terms of the quantity of class numbers that represent concepts and their relationships in each of the individual main classes. The most effective analytic strategy to show the patterns of the comparison was visualizations of similarities and differences between the two systems. Increasing or decreasing tendencies in the class through various editions were analyzed. Comparing the compositions of the main classes and distributions of concepts in the KDC and DDC discloses the differences in their knowledge structures empirically. This phase of quantitative analysis and visualizing techniques generates empirical evidence leading to interpretation.
  3. Lamb, I.; Larson, C.: Shining a light on scientific data : building a data catalog to foster data sharing and reuse (2016) 0.02
    0.017544128 = product of:
      0.07017651 = sum of:
        0.02834915 = weight(_text_:libraries in 3195) [ClassicSimilarity], result of:
          0.02834915 = score(doc=3195,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 3195, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=3195)
        0.04182736 = weight(_text_:studies in 3195) [ClassicSimilarity], result of:
          0.04182736 = score(doc=3195,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 3195, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=3195)
      0.25 = coord(2/8)
    
    Abstract
    The scientific community's growing eagerness to make research data available to the public provides libraries - with our expertise in metadata and discovery - an interesting new opportunity. This paper details the in-house creation of a "data catalog" which describes datasets ranging from population-level studies like the US Census to small, specialized datasets created by researchers at our own institution. Based on Symfony2 and Solr, the data catalog provides a powerful search interface to help researchers locate the data that can help them, and an administrative interface so librarians can add, edit, and manage metadata elements at will. This paper will outline the successes, failures, and total redos that culminated in the current manifestation of our data catalog.
  4. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.01
    0.010989259 = product of:
      0.043957036 = sum of:
        0.035903532 = weight(_text_:case in 3035) [ClassicSimilarity], result of:
          0.035903532 = score(doc=3035,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.20608193 = fieldWeight in 3035, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3035)
        0.008053505 = product of:
          0.01610701 = sum of:
            0.01610701 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
              0.01610701 = score(doc=3035,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.116070345 = fieldWeight in 3035, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    A PICTURE is said to be worth a thousand words. That metaphor might be expected to pertain a fortiori in the case of scientific papers, where a figure can brilliantly illuminate an idea that might otherwise be baffling. Papers with figures in them should thus be easier to grasp than those without. They should therefore reach larger audiences and, in turn, be more influential simply by virtue of being more widely read. But are they?
    Content
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.
  5. Zhang, J.; Mostafa, J.; Tripathy, H.: Information retrieval by semantic analysis and visualization of the concept space of D-Lib® magazine (2002) 0.01
    0.008706411 = product of:
      0.034825645 = sum of:
        0.011812146 = weight(_text_:libraries in 1211) [ClassicSimilarity], result of:
          0.011812146 = score(doc=1211,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.09073767 = fieldWeight in 1211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1211)
        0.0230135 = product of:
          0.046027 = sum of:
            0.046027 = weight(_text_:area in 1211) [ClassicSimilarity], result of:
              0.046027 = score(doc=1211,freq=6.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.23572728 = fieldWeight in 1211, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1211)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    From the user's perspective, however, it is still difficult to use current information retrieval systems. Users frequently have problems expressing their information needs and translating those needs into queries. This is partly due to the fact that information needs cannot be expressed appropriately in systems terms. It is not unusual for users to input search terms that are different from the index terms information systems use. Various methods have been proposed to help users choose search terms and articulate queries. One widely used approach is to incorporate into the information system a thesaurus-like component that represents both the important concepts in a particular subject area and the semantic relationships among those concepts. Unfortunately, the development and use of thesauri is not without its own problems. The thesaurus employed in a specific information system has often been developed for a general subject area and needs significant enhancement to be tailored to the information system where it is to be used. This thesaurus development process, if done manually, is both time consuming and labor intensive. Usage of a thesaurus in searching is complex and may raise barriers for the user. For illustration purposes, let us consider two scenarios of thesaurus usage. In the first scenario the user inputs a search term and the thesaurus then displays a matching set of related terms. Without an overview of the thesaurus - and without the ability to see the matching terms in the context of other terms - it may be difficult to assess the quality of the related terms in order to select the correct term. In the second scenario the user browses the whole thesaurus, which is organized as in an alphabetically ordered list. The problem with this approach is that the list may be long, and neither does it show users the global semantic relationship among all the listed terms.
    Nevertheless, because thesaurus use has shown to improve retrieval, for our method we integrate functions in the search interface that permit users to explore built-in search vocabularies to improve retrieval from digital libraries. Our method automatically generates the terms and their semantic relationships representing relevant topics covered in a digital library. We call these generated terms the "concepts", and the generated terms and their semantic relationships we call the "concept space". Additionally, we used a visualization technique to display the concept space and allow users to interact with this space. The automatically generated term set is considered to be more representative of subject area in a corpus than an "externally" imposed thesaurus, and our method has the potential of saving a significant amount of time and labor for those who have been manually creating thesauri as well. Information visualization is an emerging discipline and developed very quickly in the last decade. With growing volumes of documents and associated complexities, information visualization has become increasingly important. Researchers have found information visualization to be an effective way to use and understand information while minimizing a user's cognitive load. Our work was based on an algorithmic approach of concept discovery and association. Concepts are discovered using an algorithm based on an automated thesaurus generation procedure. Subsequently, similarities among terms are computed using the cosine measure, and the associations among terms are established using a method known as max-min distance clustering. The concept space is then visualized in a spring embedding graph, which roughly shows the semantic relationships among concepts in a 2-D visual representation. The semantic space of the visualization is used as a medium for users to retrieve the desired documents. In the remainder of this article, we present our algorithmic approach of concept generation and clustering, followed by description of the visualization technique and interactive interface. The paper ends with key conclusions and discussions on future work.
  6. Cao, N.; Sun, J.; Lin, Y.-R.; Gotz, D.; Liu, S.; Qu, H.: FacetAtlas : Multifaceted visualization for rich text corpora (2010) 0.01
    0.0052890894 = product of:
      0.042312715 = sum of:
        0.042312715 = weight(_text_:case in 3366) [ClassicSimilarity], result of:
          0.042312715 = score(doc=3366,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 3366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3366)
      0.125 = coord(1/8)
    
    Abstract
    Documents in rich text corpora usually contain multiple facets of information. For example, an article about a specific disease often consists of different facets such as symptom, treatment, cause, diagnosis, prognosis, and prevention. Thus, documents may have different relations based on different facets. Powerful search tools have been developed to help users locate lists of individual documents that are most related to specific keywords. However, there is a lack of effective analysis tools that reveal the multifaceted relations of documents within or cross the document clusters. In this paper, we present FacetAtlas, a multifaceted visualization technique for visually analyzing rich text corpora. FacetAtlas combines search technology with advanced visual analytical tools to convey both global and local patterns simultaneously. We describe several unique aspects of FacetAtlas, including (1) node cliques and multifaceted edges, (2) an optimized density map, and (3) automated opacity pattern enhancement for highlighting visual patterns, (4) interactive context switch between facets. In addition, we demonstrate the power of FacetAtlas through a case study that targets patient education in the health care domain. Our evaluation shows the benefits of this work, especially in support of complex multifaceted data analysis.
  7. Visual thesaurus (2005) 0.00
    0.004231272 = product of:
      0.033850174 = sum of:
        0.033850174 = weight(_text_:case in 1292) [ClassicSimilarity], result of:
          0.033850174 = score(doc=1292,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.1942959 = fieldWeight in 1292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=1292)
      0.125 = coord(1/8)
    
    Content
    Traditional print reference guides often have two methods of finding information: an order (alphabetical for dictionaries and encyclopedias, by subject hierarchy in the case of thesauri) and indices (ordered lists, with a more complete listing of words and concepts, which refers back to original content from the main body of the book). A user of such traditional print reference guides who is looking for information will either browse through the ordered information in the main body of the reference book, or scan through the indices to find what is necessary. The advent of the computer allows for much more rapid electronic searches of the same information, and for multiple layers of indices. Users can either search through information by entering a keyword, or users can browse through the information through an outline index, which represents the information contained in the main body of the data. There are two traditional user interfaces for such applications. First, the user may type text into a search field and in response, a list of results is returned to the user. The user then selects a returned entry and may page through the resulting information. Alternatively, the user may choose from a list of words from an index. For example, software thesaurus applications, in which a user attempts to find synonyms, antonyms, homonyms, etc. for a selected word, are usually implemented using the conventional search and presentation techniques discussed above. The presentation of results only allows for a one-dimensional order of data at any one time. In addition, only a limited number of results can be shown at once, and selecting a result inevitably leads to another page-if the result is not satisfactory, the users must search again. Finally, it is difficult to present information about the manner in which the search results are related, or to present quantitative information about the results without causing confusion. Therefore, there exists a need for a multidimensional graphical display of information, in particular with respect to information relating to the meaning of words and their relationships to other words. There further exists a need to present large amounts of information in a way that can be manipulated by the user, without the user losing his place. And there exists a need for more fluid, intuitive and powerful thesaurus functionality that invites the exploration of language.
  8. Hook, P.A.; Gantchev, A.: Using combined metadata sources to visualize a small library (OBL's English Language Books) (2017) 0.00
    0.0029530365 = product of:
      0.023624292 = sum of:
        0.023624292 = weight(_text_:libraries in 3870) [ClassicSimilarity], result of:
          0.023624292 = score(doc=3870,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 3870, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
      0.125 = coord(1/8)
    
    Abstract
    Data from multiple knowledge organization systems are combined to provide a global overview of the content holdings of a small personal library. Subject headings and classification data are used to effectively map the combined book and topic space of the library. While harvested and manipulated by hand, the work reveals issues and potential solutions when using automated techniques to produce topic maps of much larger libraries. The small library visualized consists of the thirty-nine, digital, English language books found in the Osama Bin Laden (OBL) compound in Abbottabad, Pakistan upon his death. As this list of books has garnered considerable media attention, it is worth providing a visual overview of the subject content of these books - some of which is not readily apparent from the titles. Metadata from subject headings and classification numbers was combined to create book-subject maps. Tree maps of the classification data were also produced. The books contain 328 subject headings. In order to enhance the base map with meaningful thematic overlay, library holding count data was also harvested (and aggregated from duplicates). This additional data revealed the relative scarcity or popularity of individual books.
  9. Dushay, N.: Visualizing bibliographic metadata : a virtual (book) spine viewer (2004) 0.00
    0.0025057346 = product of:
      0.020045877 = sum of:
        0.020045877 = weight(_text_:libraries in 1197) [ClassicSimilarity], result of:
          0.020045877 = score(doc=1197,freq=4.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.15398693 = fieldWeight in 1197, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1197)
      0.125 = coord(1/8)
    
    Abstract
    User interfaces for digital information discovery often require users to click around and read a lot of text in order to find the text they want to read-a process that is often frustrating and tedious. This is exacerbated because of the limited amount of text that can be displayed on a computer screen. To improve the user experience of computer mediated information discovery, information visualization techniques are applied to the digital library context, while retaining traditional information organization concepts. In this article, the "virtual (book) spine" and the virtual spine viewer are introduced. The virtual spine viewer is an application which allows users to visually explore large information spaces or collections while also allowing users to hone in on individual resources of interest. The virtual spine viewer introduced here is an alpha prototype, presented to promote discussion and further work. Information discovery changed radically with the introduction of computerized library access catalogs, the World Wide Web and its search engines, and online bookstores. Yet few instances of these technologies provide a user experience analogous to walking among well-organized, well-stocked bookshelves-which many people find useful as well as pleasurable. To put it another way, many of us have heard or voiced complaints about the paucity of "online browsing"-but what does this really mean? In traditional information spaces such as libraries, often we can move freely among the books and other resources. When we walk among organized, labeled bookshelves, we get a sense of the information space-we take in clues, perhaps unconsciously, as to the scope of the collection, the currency of resources, the frequency of their use, etc. We also enjoy unexpected discoveries such as finding an interesting resource because library staff deliberately located it near similar resources, or because it was miss-shelved, or because we saw it on a bookshelf on the way to the water fountain.
    When our experience of information discovery is mediated by a computer, we neither move ourselves nor the monitor. We have only the computer's monitor to view, and the keyboard and/or mouse to manipulate what is displayed there. Computer interfaces often reduce our ability to get a sense of the contents of a library: we don't perceive the scope of the library: its breadth, (the quantity of materials/information), its density (how full the shelves are, how thorough the collection is for individual topics), or the general audience for the materials (e.g., whether the materials are appropriate for middle school students, college professors, etc.). Additionally, many computer interfaces for information discovery require users to scroll through long lists, to click numerous navigational links and to read a lot of text to find the exact text they want to read. Text features of resources are almost always presented alphabetically, and the number of items in these alphabetical lists sometimes can be very long. Alphabetical ordering is certainly an improvement over no ordering, but it generally has no bearing on features with an inherent non-alphabetical ordering (e.g., dates of historical events), nor does it necessarily group similar items together. Alphabetical ordering of resources is analogous to one of the most familiar complaints about dictionaries: sometimes you need to know how to spell a word in order to look up its correct spelling in the dictionary. Some have used technology to replicate the appearance of physical libraries, presenting rooms of bookcases and shelves of book spines in virtual 3D environments. This approach presents a problem, as few book spines can be displayed legibly on a monitor screen. This article examines the role of book spines, call numbers, and other traditional organizational and information discovery concepts, and integrates this knowledge with information visualization techniques to show how computers and monitors can meet or exceed similar information discovery methods. The goal is to tap the unique potentials of current information visualization approaches in order to improve information discovery, offer new services, and most important of all, improve user satisfaction. We need to capitalize on what computers do well while bearing in mind their limitations. The intent is to design GUIs to optimize utility and provide a positive experience for the user.
  10. Palm, F.: QVIZ : Query and context based visualization of time-spatial cultural dynamics (2007) 0.00
    0.0020133762 = product of:
      0.01610701 = sum of:
        0.01610701 = product of:
          0.03221402 = sum of:
            0.03221402 = weight(_text_:22 in 1289) [ClassicSimilarity], result of:
              0.03221402 = score(doc=1289,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.23214069 = fieldWeight in 1289, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1289)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".