Search (165 results, page 1 of 9)

  • × year_i:[2010 TO 2020}
  • × type_ss:"el"
  1. Kleineberg, M.: Context analysis and context indexing : formal pragmatics in knowledge organization (2014) 0.28
    0.27535927 = product of:
      0.73429143 = sum of:
        0.10489877 = product of:
          0.3146963 = sum of:
            0.3146963 = weight(_text_:3a in 1826) [ClassicSimilarity], result of:
              0.3146963 = score(doc=1826,freq=2.0), product of:
                0.3359639 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03962768 = queryNorm
                0.93669677 = fieldWeight in 1826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1826)
          0.33333334 = coord(1/3)
        0.3146963 = weight(_text_:2f in 1826) [ClassicSimilarity], result of:
          0.3146963 = score(doc=1826,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.93669677 = fieldWeight in 1826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.078125 = fieldNorm(doc=1826)
        0.3146963 = weight(_text_:2f in 1826) [ClassicSimilarity], result of:
          0.3146963 = score(doc=1826,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.93669677 = fieldWeight in 1826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.078125 = fieldNorm(doc=1826)
      0.375 = coord(3/8)
    
    Source
    http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CDQQFjAE&url=http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F3131107&ei=HzFWVYvGMsiNsgGTyoFI&usg=AFQjCNE2FHUeR9oQTQlNC4TPedv4Mo3DaQ&sig2=Rlzpr7a3BLZZkqZCXXN_IA&bvm=bv.93564037,d.bGg&cad=rja
  2. Shala, E.: ¬Die Autonomie des Menschen und der Maschine : gegenwärtige Definitionen von Autonomie zwischen philosophischem Hintergrund und technologischer Umsetzbarkeit (2014) 0.14
    0.13767964 = product of:
      0.36714572 = sum of:
        0.052449387 = product of:
          0.15734816 = sum of:
            0.15734816 = weight(_text_:3a in 4388) [ClassicSimilarity], result of:
              0.15734816 = score(doc=4388,freq=2.0), product of:
                0.3359639 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03962768 = queryNorm
                0.46834838 = fieldWeight in 4388, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4388)
          0.33333334 = coord(1/3)
        0.15734816 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.15734816 = score(doc=4388,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.15734816 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.15734816 = score(doc=4388,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
      0.375 = coord(3/8)
    
    Footnote
    Vgl. unter: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwizweHljdbcAhVS16QKHXcFD9QQFjABegQICRAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271200105_Die_Autonomie_des_Menschen_und_der_Maschine_-_gegenwartige_Definitionen_von_Autonomie_zwischen_philosophischem_Hintergrund_und_technologischer_Umsetzbarkeit_Redigierte_Version_der_Magisterarbeit_Karls&usg=AOvVaw06orrdJmFF2xbCCp_hL26q.
  3. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.07
    0.07186526 = product of:
      0.14373052 = sum of:
        0.02834915 = weight(_text_:libraries in 1967) [ClassicSimilarity], result of:
          0.02834915 = score(doc=1967,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.05077526 = weight(_text_:case in 1967) [ClassicSimilarity], result of:
          0.05077526 = score(doc=1967,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.04182736 = weight(_text_:studies in 1967) [ClassicSimilarity], result of:
          0.04182736 = score(doc=1967,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.022778753 = product of:
          0.045557506 = sum of:
            0.045557506 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.045557506 = score(doc=1967,freq=4.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
    Source
    Beyond libraries - subject metadata in the digital environment and semantic web. IFLA Satellite Post-Conference, 17-18 August 2012, Tallinn
  4. Fagan, J.C.: Usability studies of faceted browsing : a literature review (2010) 0.04
    0.03815141 = product of:
      0.15260564 = sum of:
        0.03307401 = weight(_text_:libraries in 4396) [ClassicSimilarity], result of:
          0.03307401 = score(doc=4396,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.25406548 = fieldWeight in 4396, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4396)
        0.11953163 = weight(_text_:studies in 4396) [ClassicSimilarity], result of:
          0.11953163 = score(doc=4396,freq=12.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.75592977 = fieldWeight in 4396, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4396)
      0.25 = coord(2/8)
    
    Abstract
    Faceted browsing is a common feature of new library catalog interfaces. But to what extent does it improve user performance in searching within today's library catalog systems? This article reviews the literature for user studies involving faceted browsing and user studies of "next-generation" library catalogs that incorporate faceted browsing. Both the results and the methods of these studies are analyzed by asking, What do we currently know about faceted browsing? How can we design better studies of faceted browsing in library catalogs? The article proposes methodological considerations for practicing librarians and provides examples of goals, tasks, and measurements for user studies of faceted browsing in library catalogs.
    Source
    Information technology and libraries. 2010, June, S.58-66
  5. Proceedings of the 2nd International Workshop on Semantic Digital Archives held in conjunction with the 16th Int. Conference on Theory and Practice of Digital Libraries (TPDL) on September 27, 2012 in Paphos, Cyprus (2012) 0.03
    0.030361729 = product of:
      0.08096461 = sum of:
        0.0375024 = weight(_text_:libraries in 468) [ClassicSimilarity], result of:
          0.0375024 = score(doc=468,freq=14.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.28808317 = fieldWeight in 468, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0234375 = fieldNorm(doc=468)
        0.02091368 = weight(_text_:studies in 468) [ClassicSimilarity], result of:
          0.02091368 = score(doc=468,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.13226016 = fieldWeight in 468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0234375 = fieldNorm(doc=468)
        0.022548532 = product of:
          0.045097064 = sum of:
            0.045097064 = weight(_text_:area in 468) [ClassicSimilarity], result of:
              0.045097064 = score(doc=468,freq=4.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.23096462 = fieldWeight in 468, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=468)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Archival Information Systems (AIS) are becoming increasingly important. For decades, the amount of content created digitally is growing and its complete life cycle nowadays tends to remain digital. A selection of this content is expected to be of value for the future and can thus be considered being part of our cultural heritage. However, digital content poses many challenges for long-term or indefinite preservation, e.g. digital publications become increasingly complex by the embedding of different kinds of multimedia, data in arbitrary formats and software. As soon as these digital publications become obsolete, but are still deemed to be of value in the future, they have to be transferred smoothly into appropriate AIS where they need to be kept accessible even through changing technologies. The successful previous SDA workshop in 2011 showed: Both, the library and the archiving community have made valuable contributions to the management of huge amounts of knowledge and data. However, both are approaching this topic from different views which shall be brought together to cross-fertilize each other. There are promising combinations of pertinence and provenance models since those are traditionally the prevailing knowledge organization principles of the library and archiving community, respectively. Another scientific discipline providing promising technical solutions for knowledge representation and knowledge management is semantic technologies, which is supported by appropriate W3C recommendations and a large user community. At the forefront of making the semantic web a mature and applicable reality is the linked data initiative, which already has started to be adopted by the library community. It can be expected that using semantic (web) technologies in general and linked data in particular can mature the area of digital archiving as well as technologically tighten the natural bond between digital libraries and digital archives. Semantic representations of contextual knowledge about cultural heritage objects will enhance organization and access of data and knowledge. In order to achieve a comprehensive investigation, the information seeking and document triage behaviors of users (an area also classified under the field of Human Computer Interaction) will also be included in the research.
    Semantic search & semantic information retrieval in digital archives and digital libraries Semantic multimedia archives Ontologies & linked data for digital archives and digital libraries Ontologies & linked data for multimedia archives Implementations and evaluations of semantic digital archives Visualization and exploration of digital content User interfaces for semantic digital libraries User interfaces for intelligent multimedia information retrieval User studies focusing on end-user needs and information seeking behavior of end-users Theoretical and practical archiving frameworks using Semantic (Web) technologies Logical theories for digital archives Semantic (Web) services implementing the OAIS standard Semantic or logical provenance models for digital archives or digital libraries Information integration/semantic ingest (e.g. from digital libraries) Trust for ingest and data security/integrity check for long-term storage of archival records Semantic extensions of emulation/virtualization methodologies tailored for digital archives Semantic long-term storage and hardware organization tailored for AIS Migration strategies based on Semantic (Web) technologies Knowledge evolution We expect new insights and results for sustainable technical solutions for digital archiving using knowledge management techniques based on semantic technologies. The workshop emphasizes interdisciplinarity and aims at an audience consisting of scientists and scholars from the digital library, digital archiving, multimedia technology and semantic web community, the information and library sciences, as well as, from the social sciences and (digital) humanities, in particular people working on the mentioned topics. We encourage end-users, practitioners and policy-makers from cultural heritage institutions to participate as well.
  6. Mixter, J.; Childress, E.R.: FAST (Faceted Application of Subject Terminology) users : summary and case studies (2013) 0.03
    0.027283307 = product of:
      0.10913323 = sum of:
        0.059839215 = weight(_text_:case in 2011) [ClassicSimilarity], result of:
          0.059839215 = score(doc=2011,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.34346986 = fieldWeight in 2011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2011)
        0.049294014 = weight(_text_:studies in 2011) [ClassicSimilarity], result of:
          0.049294014 = score(doc=2011,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.3117402 = fieldWeight in 2011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2011)
      0.25 = coord(2/8)
    
    Abstract
    This document presents: a brief overview of FAST; a brief analysis of common characteristics of parties that have either chosen to adopt FAST or chosen against using FAST; suggested improvements for FAST vocabulary and services; tables summarizing FAST adopters and non-adopters; and sixteen individual "case studies" presented as edited write-ups of interviews.
  7. Wongthontham, P.; Abu-Salih, B.: Ontology-based approach for semantic data extraction from social big data : state-of-the-art and research directions (2018) 0.02
    0.023150655 = product of:
      0.09260262 = sum of:
        0.05077526 = weight(_text_:case in 4097) [ClassicSimilarity], result of:
          0.05077526 = score(doc=4097,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 4097, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
        0.04182736 = weight(_text_:studies in 4097) [ClassicSimilarity], result of:
          0.04182736 = score(doc=4097,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 4097, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
      0.25 = coord(2/8)
    
    Abstract
    A challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academic and industry. To address this challenge, semantic analysis of textual data is focused in this paper. We propose an ontology-based approach to extract semantics of textual data and define the domain of data. In other words, we semantically analyse the social data at two levels i.e. the entity level and the domain level. We have chosen Twitter as a social channel challenge for a purpose of concept proof. Domain knowledge is captured in ontologies which are then used to enrich the semantics of tweets provided with specific semantic conceptual representation of entities that appear in the tweets. Case studies are used to demonstrate this approach. We experiment and evaluate our proposed approach with a public dataset collected from Twitter and from the politics domain. The ontology-based approach leverages entity extraction and concept mappings in terms of quantity and accuracy of concept identification.
  8. Buttò, S.: RDA: analyses, considerations and activities by the Central Institute for the Union Catalogue of Italian Libraries and Bibliographic Information (ICCU) (2016) 0.02
    0.02111029 = product of:
      0.08444116 = sum of:
        0.05786746 = weight(_text_:libraries in 2958) [ClassicSimilarity], result of:
          0.05786746 = score(doc=2958,freq=12.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.44452196 = fieldWeight in 2958, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2958)
        0.0265737 = product of:
          0.0531474 = sum of:
            0.0531474 = weight(_text_:area in 2958) [ClassicSimilarity], result of:
              0.0531474 = score(doc=2958,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.27219442 = fieldWeight in 2958, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2958)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    The report aims to analyze the applicability of the Resource Description and Access (RDA) within the Italian public libraries, and also in the archives and museums in order to contribute to the discussion at international level. The Central Institute for the Union Catalogue of Italian libraries (ICCU) manages the online catalogue of the Italian libraries and the network of bibliographic services. ICCU has the institutional task of coordinating the cataloging and the documentation activities for the Italian libraries. On March 31 st 2014, the Institute signed the Agreement with the American Library Association,Publishing ALA, for the Italian translation rights of RDA, now available and published inRDAToolkit. The Italian translation has been carried out and realized by the Technical Working Group, made up of the main national and academic libraries, cultural Institutions and bibliographic agencies. The Group started working from the need of studying the new code in its textual detail, to better understand the principles, purposes, and applicability and finally its sustainability within the national context in relation to the area of the bibliographic control. At international level, starting from the publication of the Italian version of RDA and through the research carried out by ICCU and by the national Working Groups, the purpose is a more direct comparison with the experiences of the other European countries, also within EURIG international context, for an exchange of experiences aimed at strengthening the informational content of the data cataloging, with respect to history, cultural traditions and national identities of the different countries.
  9. Farney, T.: using Google Tag Manager to share code : Designing shareable tags (2019) 0.02
    0.020807797 = product of:
      0.08323119 = sum of:
        0.040918473 = weight(_text_:libraries in 5443) [ClassicSimilarity], result of:
          0.040918473 = score(doc=5443,freq=6.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.3143245 = fieldWeight in 5443, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5443)
        0.042312715 = weight(_text_:case in 5443) [ClassicSimilarity], result of:
          0.042312715 = score(doc=5443,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 5443, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5443)
      0.25 = coord(2/8)
    
    Abstract
    Sharing code between libraries is not a new phenomenon and neither is Google Tag Manager (GTM). GTM launched in 2012 as a JavaScript and HTML manager with the intent of easing the implementation of different analytics trackers and marketing scripts on a website. However, it can be used to load other code using its tag system onto a website. It's a simple process to export and import tags facilitating the code sharing process without requiring a high degree of coding experience. The entire process involves creating the script tag in GTM, exporting the GTM content into a sharable export file for someone else to import into their library's GTM container, and finally publishing that imported file to push the code to the website it was designed for. This case study provides an example of designing and sharing a GTM container loaded with advanced Google Analytics configurations such as event tracking and custom dimensions for other libraries using the Summon discovery service. It also discusses processes for designing GTM tags for export, best practices on importing and testing GTM content created by other libraries and concludes with evaluating the pros and cons of encouraging GTM use.
  10. Mäkelä, E.; Hyvönen, E.; Ruotsalo, T.: How to deal with massively heterogeneous cultural heritage data : lessons learned in CultureSampo (2012) 0.02
    0.019781101 = product of:
      0.079124406 = sum of:
        0.02834915 = weight(_text_:libraries in 3263) [ClassicSimilarity], result of:
          0.02834915 = score(doc=3263,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 3263, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=3263)
        0.05077526 = weight(_text_:case in 3263) [ClassicSimilarity], result of:
          0.05077526 = score(doc=3263,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 3263, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=3263)
      0.25 = coord(2/8)
    
    Abstract
    This paper presents the CultureSampo system for publishing heterogeneous linked data as a service. Discussed are the problems of converting legacy data into linked data, as well as the challenge of making the massively heterogeneous yet interlinked cultural heritage content interoperable on a semantic level. Novel user interface concepts for then utilizing the content are also presented. In the approach described, the data is published not only for human use, but also as intelligent services for other computer systems that can then provide interfaces of their own for the linked data. As a concrete use case of using CultureSampo as a service, the BookSampo system for publishing Finnish fiction literature on the semantic web is presented.
    Content
    Beitrag eines Schwerpunktthemas: Semantic Web and Reasoning for Cultural Heritage and Digital Libraries: http://www.semantic-web-journal.net/content/how-deal-massively-heterogeneous-cultural-heritage-data-%E2%80%93-lessons-learned-culturesampo http://www.semantic-web-journal.net/sites/default/files/swj160_0.pdf.
  11. Choi, I.: Visualizations of cross-cultural bibliographic classification : comparative studies of the Korean Decimal Classification and the Dewey Decimal Classification (2017) 0.02
    0.019292213 = product of:
      0.07716885 = sum of:
        0.042312715 = weight(_text_:case in 3869) [ClassicSimilarity], result of:
          0.042312715 = score(doc=3869,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 3869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3869)
        0.034856133 = weight(_text_:studies in 3869) [ClassicSimilarity], result of:
          0.034856133 = score(doc=3869,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.22043361 = fieldWeight in 3869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3869)
      0.25 = coord(2/8)
    
    Abstract
    The changes in KO systems induced by sociocultural influences may include those in both classificatory principles and cultural features. The proposed study will examine the Korean Decimal Classification (KDC)'s adaptation of the Dewey Decimal Classification (DDC) by comparing the two systems. This case manifests the sociocultural influences on KOSs in a cross-cultural context. Therefore, the study aims at an in-depth investigation of sociocultural influences by situating a KOS in a cross-cultural environment and examining the dynamics between two classification systems designed to organize information resources in two distinct sociocultural contexts. As a preceding stage of the comparison, the analysis was conducted on the changes that result from the meeting of different sociocultural feature in a descriptive method. The analysis aims to identify variations between the two schemes in comparison of the knowledge structures of the two classifications, in terms of the quantity of class numbers that represent concepts and their relationships in each of the individual main classes. The most effective analytic strategy to show the patterns of the comparison was visualizations of similarities and differences between the two systems. Increasing or decreasing tendencies in the class through various editions were analyzed. Comparing the compositions of the main classes and distributions of concepts in the KDC and DDC discloses the differences in their knowledge structures empirically. This phase of quantitative analysis and visualizing techniques generates empirical evidence leading to interpretation.
  12. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.02
    0.01807038 = product of:
      0.07228152 = sum of:
        0.020459237 = weight(_text_:libraries in 4232) [ClassicSimilarity], result of:
          0.020459237 = score(doc=4232,freq=6.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.15716225 = fieldWeight in 4232, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.051822282 = weight(_text_:case in 4232) [ClassicSimilarity], result of:
          0.051822282 = score(doc=4232,freq=12.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29745364 = fieldWeight in 4232, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.25 = coord(2/8)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
  13. Vatant, B.; Dunsire, G.: Use case vocabulary merging (2010) 0.02
    0.017912261 = product of:
      0.071649045 = sum of:
        0.037798867 = weight(_text_:libraries in 4336) [ClassicSimilarity], result of:
          0.037798867 = score(doc=4336,freq=8.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.29036054 = fieldWeight in 4336, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03125 = fieldNorm(doc=4336)
        0.033850174 = weight(_text_:case in 4336) [ClassicSimilarity], result of:
          0.033850174 = score(doc=4336,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.1942959 = fieldWeight in 4336, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=4336)
      0.25 = coord(2/8)
    
    Abstract
    The publication of library legacy includes publication of structuring vocabularies such as thesauri, classifications, subject headings. Different sources use different vocabularies, different in structure, width, depth and scope, and languages. Federated access to distributed data collections is currently possible if they rely on the same vocabularies. Mapping techniques and standards supporting them (such as SKOS mapping properties, OWL sameAs and equivalentClass) are still largely experimental, even in the linked data land. Libraries use a variety of controlled subject vocabulary and classification schemes to index items in their collections. Although most collections will employ only a single scheme, different schemes may be chosen to index different collections within a library or in separate libraries; schemes are chosen on the basis of language, subject focus (general or specific), granularity (specificity), user expectation, and availability and support (cost, currency, completeness, tools). For example, a typical academic library will operate separate metadata systems for the library's main collections, special collections (e.g. manuscripts, archives, audiovisual), digital collections, and one or more institutional repositories for teaching and research output; each of these systems may employ a different subject vocabulary, with little or no interoperability between terms and concepts. Users expect to have a single point-of-search in resource discovery services focussed on their local institutional collections. Librarians have to use complex and expensive resource discovery platforms to meet user expectations. Library communities continue to develop resource discovery services for consortia with a geographical, subject, sector (public, academic, school, special libraries), and/or domain (libraries, archives, museums) focus. Services are based on distributed searching (e.g. via Z39.50) or metadata aggregations (e.g. OCLC's WorldCat and OAISter). As a result, the number of different subject schemes encountered in such services is increasing. Trans-national consortia (e.g. Europeana) add to the complexity of the environment by including subject vocabularies in multiple languages. Users expect single point-of-search in consortial resource discovery service involving multiple organisations and large-scale metadata aggregations. Users also expect to be able to search for subjects using their own language and terms in an unambiguous, contextualised manner.
  14. Lamb, I.; Larson, C.: Shining a light on scientific data : building a data catalog to foster data sharing and reuse (2016) 0.02
    0.017544128 = product of:
      0.07017651 = sum of:
        0.02834915 = weight(_text_:libraries in 3195) [ClassicSimilarity], result of:
          0.02834915 = score(doc=3195,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 3195, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=3195)
        0.04182736 = weight(_text_:studies in 3195) [ClassicSimilarity], result of:
          0.04182736 = score(doc=3195,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 3195, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=3195)
      0.25 = coord(2/8)
    
    Abstract
    The scientific community's growing eagerness to make research data available to the public provides libraries - with our expertise in metadata and discovery - an interesting new opportunity. This paper details the in-house creation of a "data catalog" which describes datasets ranging from population-level studies like the US Census to small, specialized datasets created by researchers at our own institution. Based on Symfony2 and Solr, the data catalog provides a powerful search interface to help researchers locate the data that can help them, and an administrative interface so librarians can add, edit, and manage metadata elements at will. This paper will outline the successes, failures, and total redos that culminated in the current manifestation of our data catalog.
  15. Bahls, D.; Scherp, G.; Tochtermann, K.; Hasselbring, W.: Towards a recommender system for statistical research data (2012) 0.02
    0.016484251 = product of:
      0.065937005 = sum of:
        0.023624292 = weight(_text_:libraries in 474) [ClassicSimilarity], result of:
          0.023624292 = score(doc=474,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 474, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=474)
        0.042312715 = weight(_text_:case in 474) [ClassicSimilarity], result of:
          0.042312715 = score(doc=474,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 474, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=474)
      0.25 = coord(2/8)
    
    Abstract
    To effectively promote the exchange of scientific data, retrieval services are required to suit the needs of the research community. A large amount of research in the field of economics is based on statistical data, which is often drawn from external sources like data agencies, statistical offices or affiated institutes. Since producing such data for a particular research question is expensive in time and money-if possible at all- research activities are often influenced by the availability of suitable data. Researchers choose or adjust their questions, so that the empirical foundation to support their results is given. As a consequence, researchers look out and poll for newly available data in all sorts of directions due to a lacking information infrastructure for this domain. This circumstance and a recent report from the High Level Expert Group on Scientific Data motivate recommendation and notification services for research data sets. In this paper, we elaborate on a case-based recommender system for statistical data, which allows for precise query specification. We discuss required similarity measures on the basis of cross-domain code lists and propose a system architecture. To address the problem of continuous polling, we elaborate on a notification service to inform researchers on newly avaible data sets based on their personal request.
    Source
    Proceedings of the 2nd International Workshop on Semantic Digital Archives held in conjunction with the 16th Int. Conference on Theory and Practice of Digital Libraries (TPDL) on September 27, 2012 in Paphos, Cyprus [http://ceur-ws.org/Vol-912/proceedings.pdf]. Eds.: A. Mitschik et al
  16. Binding, C.; Tudhope, D.: Improving interoperability using vocabulary linked data (2015) 0.02
    0.016484251 = product of:
      0.065937005 = sum of:
        0.023624292 = weight(_text_:libraries in 2205) [ClassicSimilarity], result of:
          0.023624292 = score(doc=2205,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 2205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2205)
        0.042312715 = weight(_text_:case in 2205) [ClassicSimilarity], result of:
          0.042312715 = score(doc=2205,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 2205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2205)
      0.25 = coord(2/8)
    
    Abstract
    The concept of Linked Data has been an emerging theme within the computing and digital heritage areas in recent years. The growth and scale of Linked Data has underlined the need for greater commonality in concept referencing, to avoid local redefinition and duplication of reference resources. Achieving domain-wide agreement on common vocabularies would be an unreasonable expectation; however, datasets often already have local vocabulary resources defined, and so the prospects for large-scale interoperability can be substantially improved by creating alignment links from these local vocabularies out to common external reference resources. The ARIADNE project is undertaking large-scale integration of archaeology dataset metadata records, to create a cross-searchable research repository resource. Key to enabling this cross search will be the 'subject' metadata originating from multiple data providers, containing terms from multiple multilingual controlled vocabularies. This paper discusses various aspects of vocabulary mapping. Experience from the previous SENESCHAL project in the publication of controlled vocabularies as Linked Open Data is discussed, emphasizing the importance of unique URI identifiers for vocabulary concepts. There is a need to align legacy indexing data to the uniquely defined concepts and examples are discussed of SENESCHAL data alignment work. A case study for the ARIADNE project presents work on mapping between vocabularies, based on the Getty Art and Architecture Thesaurus as a central hub and employing an interactive vocabulary mapping tool developed for the project, which generates SKOS mapping relationships in JSON and other formats. The potential use of such vocabulary mappings to assist cross search over archaeological datasets from different countries is illustrated in a pilot experiment. The results demonstrate the enhanced opportunities for interoperability and cross searching that the approach offers.
    Source
    International journal on digital libraries. 2015, S.1-17 DOI: 10.1007/s00799-015-0166-y
  17. Husevag, A.-S.R.: Named entities in indexing : a case study of TV subtitles and metadata records (2016) 0.02
    0.016484251 = product of:
      0.065937005 = sum of:
        0.023624292 = weight(_text_:libraries in 3105) [ClassicSimilarity], result of:
          0.023624292 = score(doc=3105,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 3105, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3105)
        0.042312715 = weight(_text_:case in 3105) [ClassicSimilarity], result of:
          0.042312715 = score(doc=3105,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 3105, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3105)
      0.25 = coord(2/8)
    
    Source
    Proceedings of the 15th European Networked Knowledge Organization Systems Workshop (NKOS 2016) co-located with the 20th International Conference on Theory and Practice of Digital Libraries 2016 (TPDL 2016), Hannover, Germany, September 9, 2016. Edi. by Philipp Mayr et al. [http://ceur-ws.org/Vol-1676/=urn:nbn:de:0074-1676-5]
  18. Neumann, M.; Steinberg, J.; Schaer, P.: Web-ccraping for non-programmers : introducing OXPath for digital library metadata harvesting (2017) 0.02
    0.016484251 = product of:
      0.065937005 = sum of:
        0.023624292 = weight(_text_:libraries in 3895) [ClassicSimilarity], result of:
          0.023624292 = score(doc=3895,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 3895, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3895)
        0.042312715 = weight(_text_:case in 3895) [ClassicSimilarity], result of:
          0.042312715 = score(doc=3895,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 3895, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3895)
      0.25 = coord(2/8)
    
    Abstract
    Building up new collections for digital libraries is a demanding task. Available data sets have to be extracted which is usually done with the help of software developers as it involves custom data handlers or conversion scripts. In cases where the desired data is only available on the data provider's website custom web scrapers are needed. This may be the case for small to medium-size publishers, research institutes or funding agencies. As data curation is a typical task that is done by people with a library and information science background, these people are usually proficient with XML technologies but are not full-stack programmers. Therefore we would like to present a web scraping tool that does not demand the digital library curators to program custom web scrapers from scratch. We present the open-source tool OXPath, an extension of XPath, that allows the user to define data to be extracted from websites in a declarative way. By taking one of our own use cases as an example, we guide you in more detail through the process of creating an OXPath wrapper for metadata harvesting. We also point out some practical things to consider when creating a web scraper (with OXPath). On top of that, we also present a syntax highlighting plugin for the popular text editor Atom that we developed to further support OXPath users and to simplify the authoring process.
  19. Kashyap, M.M.: Application of integrative approach in the teaching of library science techniques and application of information technology (2011) 0.02
    0.016420944 = product of:
      0.065683775 = sum of:
        0.037798867 = weight(_text_:libraries in 4395) [ClassicSimilarity], result of:
          0.037798867 = score(doc=4395,freq=8.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.29036054 = fieldWeight in 4395, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03125 = fieldNorm(doc=4395)
        0.027884906 = weight(_text_:studies in 4395) [ClassicSimilarity], result of:
          0.027884906 = score(doc=4395,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.17634688 = fieldWeight in 4395, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03125 = fieldNorm(doc=4395)
      0.25 = coord(2/8)
    
    Abstract
    Today many libraries are using computers and allied information technologies to improve their work methods and services. Consequently, the libraries need such professional staff, or need to train the present one, who could face the challenges placed by the introduction of these technologies in the libraries. To meet the demand of such professional staff, the departments of Library and Information Science in India introduced new courses of studies to expose their students in the use and application of computers and other allied technologies. Some courses introduced are: Computer Application in Libraries; Systems Analysis and Design Technique; Design and Development of Computer-based Library Information Systems; Database Organisation and Design; Library Networking; Use and Application of Communication Technology, and so forth. It is felt that the computer and information technologies biased courses need to be restructured, revised, and more harmoniously blended with the traditional main stream courses of library and information science discipline. We must alter the strategy of teaching library techniques, such as classification, cataloguing, and library procedures, and the techniques of designing computer-based library information systems and services. The use and application of these techniques get interwoven when we shift from a manually operated library system's environment to computer-based library system's environment. As such, it becomes necessary that we must follow an integrative approach, when we teach these techniques to the students of library and information science or train library staff in the use and application of these techniques to design, develop and implement computer-based library information systems and services. In the following sections of this paper, we shall outline the likeness or correspondence between certain concepts and techniques formed by computer specialist and the one developed by the librarians, in their respective domains. We make use of these techniques (i.e. the techniques of both the domains) in the design and implementation of computer-based library information systems and services. As such, it is essential that lessons of study concerning the exposition of these supplementary and complementary techniques must be integrated.
  20. Sy, M.-F.; Ranwez, S.; Montmain, J.; Ragnault, A.; Crampes, M.; Ranwez, V.: User centered and ontology based information retrieval system for life sciences (2012) 0.02
    0.01543377 = product of:
      0.06173508 = sum of:
        0.033850174 = weight(_text_:case in 699) [ClassicSimilarity], result of:
          0.033850174 = score(doc=699,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.1942959 = fieldWeight in 699, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=699)
        0.027884906 = weight(_text_:studies in 699) [ClassicSimilarity], result of:
          0.027884906 = score(doc=699,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.17634688 = fieldWeight in 699, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03125 = fieldNorm(doc=699)
      0.25 = coord(2/8)
    
    Abstract
    Background: Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. Results: This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. Conclusions: The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help.

Languages

  • e 115
  • d 45
  • a 1
  • es 1
  • i 1
  • More… Less…

Types

  • a 108
  • s 11
  • m 3
  • x 3
  • r 2
  • More… Less…