Search (13 results, page 1 of 1)

  • × year_i:[2020 TO 2030}
  • × theme_ss:"Wissensrepräsentation"
  1. Hocker, J.; Schindler, C.; Rittberger, M.: Participatory design for ontologies : a case study of an open science ontology for qualitative coding schemas (2020) 0.01
    0.014652345 = product of:
      0.05860938 = sum of:
        0.047871374 = weight(_text_:case in 179) [ClassicSimilarity], result of:
          0.047871374 = score(doc=179,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.2747759 = fieldWeight in 179, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=179)
        0.010738007 = product of:
          0.021476014 = sum of:
            0.021476014 = weight(_text_:22 in 179) [ClassicSimilarity], result of:
              0.021476014 = score(doc=179,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.15476047 = fieldWeight in 179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=179)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Purpose The open science movement calls for transparent and retraceable research processes. While infrastructures to support these practices in qualitative research are lacking, the design needs to consider different approaches and workflows. The paper bases on the definition of ontologies as shared conceptualizations of knowledge (Borst, 1999). The authors argue that participatory design is a good way to create these shared conceptualizations by giving domain experts and future users a voice in the design process via interviews, workshops and observations. Design/methodology/approach This paper presents a novel approach for creating ontologies in the field of open science using participatory design. As a case study the creation of an ontology for qualitative coding schemas is presented. Coding schemas are an important result of qualitative research, and reuse can yield great potential for open science making qualitative research more transparent, enhance sharing of coding schemas and teaching of qualitative methods. The participatory design process consisted of three parts: a requirement analysis using interviews and an observation, a design phase accompanied by interviews and an evaluation phase based on user tests as well as interviews. Findings The research showed several positive outcomes due to participatory design: higher commitment of users, mutual learning, high quality feedback and better quality of the ontology. However, there are two obstacles in this approach: First, contradictive answers by the interviewees, which needs to be balanced; second, this approach takes more time due to interview planning and analysis. Practical implications The implication of the paper is in the long run to decentralize the design of open science infrastructures and to involve parties affected on several levels. Originality/value In ontology design, several methods exist by using user-centered design or participatory design doing workshops. In this paper, the authors outline the potentials for participatory design using mainly interviews in creating an ontology for open science. The authors focus on close contact to researchers in order to build the ontology upon the expert's knowledge.
    Date
    20. 1.2015 18:30:22
  2. Machado, L.; Veronez Júnior, W.R.; Martínez-Ávila, D.: ¬A indeterminação ontológica dos conceitos : interpretações linguísticas e psicológicas [The ontologic indetermination of concepts: linguistic and psychological interpretations] (2022) 0.01
    0.00522842 = product of:
      0.04182736 = sum of:
        0.04182736 = weight(_text_:studies in 832) [ClassicSimilarity], result of:
          0.04182736 = score(doc=832,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 832, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=832)
      0.125 = coord(1/8)
    
    Abstract
    In the context of Knowledge Organization (KO) the ontological focus is sometimes overlooked in studies related to the nature of the concept. This study presents an analysis with this purpose, questioning possible modes of existence of concepts (such as mental representations, cognitive abilities or abstract objects), framed in four different readings: a linguistic one, the psychological one, the epistemological one, and the ontological one; and focuses on the two first ones. The suitability of using the concept as an elementary unit of Knowledge Organization Systems (KOS) is analyzed according to the different perspectives. From a mental entity, passing to another one that exists in a non-mental realm, although also non-physical, moving on to another one with an objective linguistic existence.
  3. Meng, K.; Ba, Z.; Ma, Y.; Li, G.: ¬A network coupling approach to detecting hierarchical linkages between science and technology (2024) 0.01
    0.00522842 = product of:
      0.04182736 = sum of:
        0.04182736 = weight(_text_:studies in 1205) [ClassicSimilarity], result of:
          0.04182736 = score(doc=1205,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 1205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=1205)
      0.125 = coord(1/8)
    
    Abstract
    Detecting science-technology hierarchical linkages is beneficial for understanding deep interactions between science and technology (S&T). Previous studies have mainly focused on linear linkages between S&T but ignored their structural linkages. In this paper, we propose a network coupling approach to inspect hierarchical interactions of S&T by integrating their knowledge linkages and structural linkages. S&T knowledge networks are first enhanced with bidirectional encoder representation from transformers (BERT) knowledge alignment, and then their hierarchical structures are identified based on K-core decomposition. Hierarchical coupling preferences and strengths of the S&T networks over time are further calculated based on similarities of coupling nodes' degree distribution and similarities of coupling edges' weight distribution. Extensive experimental results indicate that our approach is feasible and robust in identifying the coupling hierarchy with superior performance compared to other isomorphism and dissimilarity algorithms. Our research extends the mindset of S&T linkage measurement by identifying patterns and paths of the interaction of S&T hierarchical knowledge.
  4. Oliveira Machado, L.M.; Almeida, M.B.; Souza, R.R.: What researchers are currently saying about ontologies : a review of recent Web of Science articles (2020) 0.00
    0.0043570166 = product of:
      0.034856133 = sum of:
        0.034856133 = weight(_text_:studies in 5881) [ClassicSimilarity], result of:
          0.034856133 = score(doc=5881,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.22043361 = fieldWeight in 5881, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5881)
      0.125 = coord(1/8)
    
    Abstract
    Traditionally connected to philosophy, the term ontology is increasingly related to information systems areas. Some researchers consider the approaches of the two disciplinary contexts to be completely different. Others consider that, although different, they should talk to each other, as both seek to answer similar questions. With the extensive literature on this topic, we intend to contribute to the understanding of the use of the term ontology in current research and which references support this use. An exploratory study was developed with a mixed methodology and a sample collected from the Web of Science of articles publishe in 2018. The results show the current prevalence of computer science in studies related to ontology and also of Gruber's view suggesting ontology as kind of conceptualization, a dominant view in that field. Some researchers, particularly in the field of biomedicine, do not adhere to this dominant view but to another one that seems closer to ontological study in the philosophical context. The term ontology, in the context of information systems, appears to be consolidating with a meaning different from the original, presenting traces of the process of "metaphorization" in the transfer of the term between the two fields of study.
  5. Coladangelo, L.P.: Organizing controversy : toward cultural hospitality in controlled vocabularies through semantic annotation (2021) 0.00
    0.004231272 = product of:
      0.033850174 = sum of:
        0.033850174 = weight(_text_:case in 578) [ClassicSimilarity], result of:
          0.033850174 = score(doc=578,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.1942959 = fieldWeight in 578, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=578)
      0.125 = coord(1/8)
    
    Abstract
    This research explores current controversies within country dance communities and the implications of cultural and ethical issues related to representation of gender and race in a KOS for an ICH, while investigating the importance of context and the applicability of semantic approaches in the implementation of synonym rings. During development of a controlled vocabulary to represent dance concepts for country dance choreography, this study encountered and considered the importance of history and culture regarding synonymous and near-synonymous terms used to describe dance roles and choreographic elements. A subset of names for the same choreographic concepts across four subdomains of country dance (English country dance, Scottish country dance, contra dance, and modern western square dance) were used as a case study. These concepts included traditionally gendered dance roles and choreographic terms with a racially pejorative history. Through the lens of existing research on ethical knowl­edge organization, this study focused on principles and methods of transparency, multivocality, cultural warrant, cultural hospitality, and intersectionality to conduct a domain analysis of country dance resources. The analysis revealed differing levels of engagement and distinction among dance practitioners and communities for their preferences to use different terms for the same concept. Various lexical, grammatical, affective, social, political, and cultural aspects also emerged as important contextual factors for the use and assignment of terms. As a result, this study proposes the use of semantic annotation to represent those contextual factors and to allow mechanisms of user choice in the design of a country dance knowl­edge organization system. Future research arising from this study would focus on expanding examination to other country dance genres and continued exploration of the use of semantic approaches to represent contextual factors in controlled vocabulary development.
  6. Biagetti, M.T.: Ontologies as knowledge organization systems (2021) 0.00
    0.0041342513 = product of:
      0.03307401 = sum of:
        0.03307401 = weight(_text_:libraries in 439) [ClassicSimilarity], result of:
          0.03307401 = score(doc=439,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.25406548 = fieldWeight in 439, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=439)
      0.125 = coord(1/8)
    
    Abstract
    This contribution presents the principal features of ontologies, drawing special attention to the comparison between ontologies and the different kinds of know­ledge organization systems (KOS). The focus is on the semantic richness exhibited by ontologies, which allows the creation of a great number of relationships between terms. That establishes ontologies as the most evolved type of KOS. The concepts of "conceptualization" and "formalization" and the key components of ontologies are described and discussed, along with upper and domain ontologies and special typologies, such as bibliographical ontologies and biomedical ontologies. The use of ontologies in the digital libraries environment, where they have replaced thesauri for query expansion in searching, and the role they are playing in the Semantic Web, especially for semantic interoperability, are sketched.
  7. Guizzardi, G.; Guarino, N.: Semantics, ontology and explanation (2023) 0.00
    0.0039860546 = product of:
      0.031888437 = sum of:
        0.031888437 = product of:
          0.06377687 = sum of:
            0.06377687 = weight(_text_:area in 976) [ClassicSimilarity], result of:
              0.06377687 = score(doc=976,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32663327 = fieldWeight in 976, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.046875 = fieldNorm(doc=976)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Abstract
    The terms 'semantics' and 'ontology' are increasingly appearing together with 'explanation', not only in the scientific literature, but also in organizational communication. However, all of these terms are also being significantly overloaded. In this paper, we discuss their strong relation under particular interpretations. Specifically, we discuss a notion of explanation termed ontological unpacking, which aims at explaining symbolic domain descriptions (conceptual models, knowledge graphs, logical specifications) by revealing their ontological commitment in terms of their assumed truthmakers, i.e., the entities in one's ontology that make the propositions in those descriptions true. To illustrate this idea, we employ an ontological theory of relations to explain (by revealing the hidden semantics of) a very simple symbolic model encoded in the standard modeling language UML. We also discuss the essential role played by ontology-driven conceptual models (resulting from this form of explanation processes) in properly supporting semantic interoperability tasks. Finally, we discuss the relation between ontological unpacking and other forms of explanation in philosophy and science, as well as in the area of Artificial Intelligence.
  8. Frey, J.; Streitmatter, D.; Götz, F.; Hellmann, S.; Arndt, N.: DBpedia Archivo (2020) 0.00
    0.0037023628 = product of:
      0.029618902 = sum of:
        0.029618902 = weight(_text_:case in 53) [ClassicSimilarity], result of:
          0.029618902 = score(doc=53,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.17000891 = fieldWeight in 53, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.02734375 = fieldNorm(doc=53)
      0.125 = coord(1/8)
    
    Content
    # How does Archivo work? Each week Archivo runs several discovery algorithms to scan for new ontologies. Once discovered Archivo checks them every 8 hours. When changes are detected, Archivo downloads and rates and archives the latest snapshot persistently on the DBpedia Databus. # Archivo's mission Archivo's mission is to improve FAIRness (findability, accessibility, interoperability, and reusability) of all available ontologies on the Semantic Web. Archivo is not a guideline, it is fully automated, machine-readable and enforces interoperability with its star rating. - Ontology developers can implement against Archivo until they reach more stars. The stars and tests are designed to guarantee the interoperability and fitness of the ontology. - Ontology users can better find, access and re-use ontologies. Snapshots are persisted in case the original is not reachable anymore adding a layer of reliability to the decentral web of ontologies.
  9. Jiang, Y.-C.; Li, H.: ¬The theoretical basis and basic principles of knowledge network construction in digital library (2023) 0.00
    0.0035436437 = product of:
      0.02834915 = sum of:
        0.02834915 = weight(_text_:libraries in 1130) [ClassicSimilarity], result of:
          0.02834915 = score(doc=1130,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 1130, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=1130)
      0.125 = coord(1/8)
    
    Abstract
    Knowledge network construction (KNC) is the essence of dynamic knowledge architecture, and is helpful to illustrate ubiquitous knowledge service in digital libraries (DLs). The authors explore its theoretical foundations and basic rules to elucidate the basic principles of KNC in DLs. The results indicate that world general connection, small-world phenomenon, relevance theory, unity and continuity of science development have been the production tool, architecture aim and scientific foundation of KNC in DLs. By analyzing both the characteristics of KNC based on different types of knowledge linking and the relationships between different forms of knowledge and the appropriate ways of knowledge linking, the basic principle of KNC is summarized as follows: let each kind of knowledge linking form each shows its ability, each kind of knowledge manifestation each answer the purpose intended in practice, and then subjective knowledge network and objective knowledge network are organically combined. This will lay a solid theoretical foundation and provide an action guide for DLs to construct knowledge networks.
  10. Si, L.; Zhou, J.: Ontology and linked data of Chinese great sites information resources from users' perspective (2022) 0.00
    0.0033217126 = product of:
      0.0265737 = sum of:
        0.0265737 = product of:
          0.0531474 = sum of:
            0.0531474 = weight(_text_:area in 1115) [ClassicSimilarity], result of:
              0.0531474 = score(doc=1115,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.27219442 = fieldWeight in 1115, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1115)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Abstract
    Great Sites are closely related to the residents' life, urban and rural development. In the process of rapid urbanization in China, the protection and utilization of Great Sites are facing unprecedented pressure. Effective knowl­edge organization with ontology and linked data of Great Sites is a prerequisite for their protection and utilization. In this paper, an interview is conducted to understand the users' awareness towards Great Sites to build the user-centered ontology. As for designing the Great Site ontology, firstly, the scope of Great Sites is determined. Secondly, CIDOC- CRM and OWL-Time Ontology are reused combining the results of literature research and user interviews. Thirdly, the top-level structure and the specific instances are determined to extract knowl­edge concepts of Great Sites. Fourthly, they are transformed into classes, data properties and object properties of the Great Site ontology. Later, based on the linked data technology, taking the Great Sites in Xi'an Area as an example, this paper uses D2RQ to publish the linked data set of the knowl­edge of the Great Sites and realize its opening and sharing. Semantic services such as semantic annotation, semantic retrieval and reasoning are provided based on the ontology.
  11. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.00
    0.0029530365 = product of:
      0.023624292 = sum of:
        0.023624292 = weight(_text_:libraries in 5787) [ClassicSimilarity], result of:
          0.023624292 = score(doc=5787,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.18147534 = fieldWeight in 5787, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5787)
      0.125 = coord(1/8)
    
    Source
    International journal on digital libraries. 20(2020) no.4, S.433-452
  12. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.00
    0.0026845017 = product of:
      0.021476014 = sum of:
        0.021476014 = product of:
          0.042952027 = sum of:
            0.042952027 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.042952027 = score(doc=318,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    22. 5.2021 12:43:05
  13. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.00
    0.0016778135 = product of:
      0.013422508 = sum of:
        0.013422508 = product of:
          0.026845016 = sum of:
            0.026845016 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
              0.026845016 = score(doc=106,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.19345059 = fieldWeight in 106, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    22. 1.2021 14:24:32