Search (59 results, page 1 of 3)

  • × author_ss:"Egghe, L."
  1. Egghe, L.: Sampling and concentration values of incomplete bibliographies (2002) 0.03
    0.031831376 = product of:
      0.116715044 = sum of:
        0.07368694 = weight(_text_:higher in 450) [ClassicSimilarity], result of:
          0.07368694 = score(doc=450,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.4062471 = fieldWeight in 450, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0546875 = fieldNorm(doc=450)
        0.020651652 = weight(_text_:of in 450) [ClassicSimilarity], result of:
          0.020651652 = score(doc=450,freq=20.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.38244802 = fieldWeight in 450, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=450)
        0.022376444 = weight(_text_:on in 450) [ClassicSimilarity], result of:
          0.022376444 = score(doc=450,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29462588 = fieldWeight in 450, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=450)
      0.27272728 = coord(3/11)
    
    Abstract
    This article studies concentration aspects of bibliographies. More, in particular, we study the impact of incompleteness of such a bibliography on its concentration values (i.e., its degree of inequality of production of its sources). Incompleteness is modeled by sampling in the complete bibliography. The model is general enough to comprise truncation of a bibliography as well as a systematic sample on sources or items. In all cases we prove that the sampled bibliography (or incomplete one) has a higher concentration value than the complete one. These models, hence, shed some light on the measurement of production inequality in incomplete bibliographies.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.4, S.271-281
  2. Egghe, L.: ¬A rationale for the Hirsch-index rank-order distribution and a comparison with the impact factor rank-order distribution (2009) 0.03
    0.02760243 = product of:
      0.10120891 = sum of:
        0.07368694 = weight(_text_:higher in 3124) [ClassicSimilarity], result of:
          0.07368694 = score(doc=3124,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.4062471 = fieldWeight in 3124, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3124)
        0.014602924 = weight(_text_:of in 3124) [ClassicSimilarity], result of:
          0.014602924 = score(doc=3124,freq=10.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2704316 = fieldWeight in 3124, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3124)
        0.012919044 = weight(_text_:on in 3124) [ClassicSimilarity], result of:
          0.012919044 = score(doc=3124,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.17010231 = fieldWeight in 3124, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3124)
      0.27272728 = coord(3/11)
    
    Abstract
    We present a rationale for the Hirsch-index rank-order distribution and prove that it is a power law (hence a straight line in the log-log scale). This is confirmed by experimental data of Pyykkö and by data produced in this article on 206 mathematics journals. This distribution is of a completely different nature than the impact factor (IF) rank-order distribution which (as proved in a previous article) is S-shaped. This is also confirmed by our example. Only in the log-log scale of the h-index distribution do we notice a concave deviation of the straight line for higher ranks. This phenomenon is discussed.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.10, S.2142-2144
  3. Egghe, L.: Empirical and combinatorial study of country occurrences in multi-authored papers (2006) 0.02
    0.015974239 = product of:
      0.087858304 = sum of:
        0.07293116 = weight(_text_:higher in 81) [ClassicSimilarity], result of:
          0.07293116 = score(doc=81,freq=6.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.4020804 = fieldWeight in 81, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.03125 = fieldNorm(doc=81)
        0.014927144 = weight(_text_:of in 81) [ClassicSimilarity], result of:
          0.014927144 = score(doc=81,freq=32.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.27643585 = fieldWeight in 81, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=81)
      0.18181819 = coord(2/11)
    
    Abstract
    Papers written by several authors can be classified according to the countries of the author affiliations. The empirical part of this paper consists of two datasets. One dataset consists of 1,035 papers retrieved via the search "pedagog*" in the years 2004 and 2005 (up to October) in Academic Search Elite which is a case where phi(m) = the number of papers with m =1, 2,3 ... authors is decreasing, hence most of the papers have a low number of authors. Here we find that #, m = the number of times a country occurs j times in a m-authored paper, j =1, ..., m-1 is decreasing and that # m, m is much higher than all the other #j, m values. The other dataset consists of 3,271 papers retrieved via the search "enzyme" in the year 2005 (up to October) in the same database which is a case of a non-decreasing phi(m): most papers have 3 or 4 authors and we even find many papers with a much higher number of authors. In this case we show again that # m, m is much higher than the other #j, m values but that #j, m is not decreasing anymore in j =1, ..., m-1, although #1, m is (apart from # m, m) the largest number amongst the #j,m. The combinatorial part gives a proof of the fact that #j,m decreases for j = 1, m-1, supposing that all cases are equally possible. This shows that the first dataset is more conform with this model than the second dataset. Explanations for these findings are given. From the data we also find the (we think: new) distribution of number of papers with n =1, 2,3,... countries (i.e. where there are n different countries involved amongst the m (a n) authors of a paper): a fast decreasing function e.g. as a power law with a very large Lotka exponent.
  4. Egghe, L.: ¬A model for the size-frequency function of coauthor pairs (2008) 0.02
    0.015425446 = product of:
      0.084839955 = sum of:
        0.06316024 = weight(_text_:higher in 2366) [ClassicSimilarity], result of:
          0.06316024 = score(doc=2366,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.34821182 = fieldWeight in 2366, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.046875 = fieldNorm(doc=2366)
        0.021679718 = weight(_text_:of in 2366) [ClassicSimilarity], result of:
          0.021679718 = score(doc=2366,freq=30.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.4014868 = fieldWeight in 2366, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2366)
      0.18181819 = coord(2/11)
    
    Abstract
    Lotka's law was formulated to describe the number of authors with a certain number of publications. Empirical results (Morris & Goldstein, 2007) indicate that Lotka's law is also valid if one counts the number of publications of coauthor pairs. This article gives a simple model proving this to be true, with the same Lotka exponent, if the number of coauthored papers is proportional to the number of papers of the individual coauthors. Under the assumption that this number of coauthored papers is more than proportional to the number of papers of the individual authors (to be explained in the article), we can prove that the size-frequency function of coauthor pairs is Lotkaian with an exponent that is higher than that of the Lotka function of individual authors, a fact that is confirmed in experimental results.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.13, S.2133-2137
  5. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.01
    0.013957587 = product of:
      0.05117782 = sum of:
        0.009329465 = weight(_text_:of in 4992) [ClassicSimilarity], result of:
          0.009329465 = score(doc=4992,freq=2.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.17277241 = fieldWeight in 4992, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=4992)
        0.018455777 = weight(_text_:on in 4992) [ClassicSimilarity], result of:
          0.018455777 = score(doc=4992,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 4992, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=4992)
        0.023392577 = product of:
          0.046785153 = sum of:
            0.046785153 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
              0.046785153 = score(doc=4992,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.38690117 = fieldWeight in 4992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Date
    14. 2.2012 12:53:22
    Footnote
    This article corrects: Thoughts on uncitedness: Nobel laureates and Fields medalists as case studies in: JASIST 62(2011) no,8, S.1637-1644.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.429
  6. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.01
    0.012760563 = product of:
      0.04678873 = sum of:
        0.021679718 = weight(_text_:of in 7659) [ClassicSimilarity], result of:
          0.021679718 = score(doc=7659,freq=30.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.4014868 = fieldWeight in 7659, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.011073467 = weight(_text_:on in 7659) [ClassicSimilarity], result of:
          0.011073467 = score(doc=7659,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 7659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.014035545 = product of:
          0.02807109 = sum of:
            0.02807109 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.02807109 = score(doc=7659,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    It is possible, using ISI's Journal Citation Report (JCR), to calculate average impact factors (AIF) for LCR's subject categories but it can be more useful to know the global Impact Factor (GIF) of a subject category and compare the 2 values. Reports results of a study to compare the relationships between AIFs and GIFs of subjects, based on the particular case of the average impact factor of a subfield versus the impact factor of this subfield as a whole, the difference being studied between an average of quotients, denoted as AQ, and a global average, obtained as a quotient of averages, and denoted as GQ. In the case of impact factors, AQ becomes the average impact factor of a field, and GQ becomes its global impact factor. Discusses a number of applications of this technique in the context of informetrics and scientometrics
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  7. Egghe, L.: Type/Token-Taken informetrics (2003) 0.01
    0.012382673 = product of:
      0.0681047 = sum of:
        0.05263353 = weight(_text_:higher in 1608) [ClassicSimilarity], result of:
          0.05263353 = score(doc=1608,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 1608, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1608)
        0.015471167 = weight(_text_:of in 1608) [ClassicSimilarity], result of:
          0.015471167 = score(doc=1608,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.28651062 = fieldWeight in 1608, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1608)
      0.18181819 = coord(2/11)
    
    Abstract
    Type/Token-Taken informetrics is a new part of informetrics that studies the use of items rather than the items itself. Here, items are the objects that are produced by the sources (e.g., journals producing articles, authors producing papers, etc.). In linguistics a source is also called a type (e.g., a word), and an item a token (e.g., the use of words in texts). In informetrics, types that occur often, for example, in a database will also be requested often, for example, in information retrieval. The relative use of these occurrences will be higher than their relative occurrences itself; hence, the name Type/ Token-Taken informetrics. This article studies the frequency distribution of Type/Token-Taken informetrics, starting from the one of Type/Token informetrics (i.e., source-item relationships). We are also studying the average number my* of item uses in Type/Token-Taken informetrics and compare this with the classical average number my in Type/Token informetrics. We show that my* >= my always, and that my* is an increasing function of my. A method is presented to actually calculate my* from my, and a given a, which is the exponent in Lotka's frequency distribution of Type/Token informetrics. We leave open the problem of developing non-Lotkaian Type/TokenTaken informetrics.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.7, S.603-610
  8. Egghe, L.: ¬A universal method of information retrieval evaluation : the "missing" link M and the universal IR surface (2004) 0.01
    0.011165902 = product of:
      0.04094164 = sum of:
        0.015832627 = weight(_text_:of in 2558) [ClassicSimilarity], result of:
          0.015832627 = score(doc=2558,freq=16.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2932045 = fieldWeight in 2558, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2558)
        0.011073467 = weight(_text_:on in 2558) [ClassicSimilarity], result of:
          0.011073467 = score(doc=2558,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 2558, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2558)
        0.014035545 = product of:
          0.02807109 = sum of:
            0.02807109 = weight(_text_:22 in 2558) [ClassicSimilarity], result of:
              0.02807109 = score(doc=2558,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.23214069 = fieldWeight in 2558, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2558)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    The paper shows that the present evaluation methods in information retrieval (basically recall R and precision P and in some cases fallout F ) lack universal comparability in the sense that their values depend on the generality of the IR problem. A solution is given by using all "parts" of the database, including the non-relevant documents and also the not-retrieved documents. It turns out that the solution is given by introducing the measure M being the fraction of the not-retrieved documents that are relevant (hence the "miss" measure). We prove that - independent of the IR problem or of the IR action - the quadruple (P,R,F,M) belongs to a universal IR surface, being the same for all IR-activities. This universality is then exploited by defining a new measure for evaluation in IR allowing for unbiased comparisons of all IR results. We also show that only using one, two or even three measures from the set {P,R,F,M} necessary leads to evaluation measures that are non-universal and hence not capable of comparing different IR situations.
    Date
    14. 8.2004 19:17:22
  9. Egghe, L.: Mathematical theories of citation (1998) 0.01
    0.009439993 = product of:
      0.05191996 = sum of:
        0.022390714 = weight(_text_:of in 5125) [ClassicSimilarity], result of:
          0.022390714 = score(doc=5125,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.41465375 = fieldWeight in 5125, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5125)
        0.029529246 = weight(_text_:on in 5125) [ClassicSimilarity], result of:
          0.029529246 = score(doc=5125,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.3888053 = fieldWeight in 5125, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=5125)
      0.18181819 = coord(2/11)
    
    Abstract
    Focuses on possible mathematical theories of citation and on the intrinsic problems related to it. Sheds light on aspects of mathematical complexity as encountered in, for example, fractal theory and Mandelbrot's law. Also discusses dynamical aspects of citation theory as reflected in evolutions of journal rankings, centres of gravity or of the set of source journals. Makes some comments in this connection on growth and obsolescence
    Footnote
    Contribution to a thematic issue devoted to 'Theories of citation?'
  10. Egghe, L.: ¬The influence of transformations on the h-index and the g-index (2008) 0.01
    0.00816083 = product of:
      0.044884562 = sum of:
        0.0159967 = weight(_text_:of in 1881) [ClassicSimilarity], result of:
          0.0159967 = score(doc=1881,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.29624295 = fieldWeight in 1881, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1881)
        0.028887864 = weight(_text_:on in 1881) [ClassicSimilarity], result of:
          0.028887864 = score(doc=1881,freq=10.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.38036036 = fieldWeight in 1881, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1881)
      0.18181819 = coord(2/11)
    
    Abstract
    In a previous article, we introduced a general transformation on sources and one on items in an arbitrary information production process (IPP). In this article, we investigate the influence of these transformations on the h-index and on the g-index. General formulae that describe this influence are presented. These are applied to the case that the size-frequency function is Lotkaian (i.e., is a decreasing power function). We further show that the h-index of the transformed IPP belongs to the interval bounded by the two transformations of the h-index of the original IPP, and we also show that this property is not true for the g-index.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.8, S.1304-1312
  11. Egghe, L.: Special features of the author - publication relationship and a new explanation of Lotka's law based on convolution theory (1994) 0.01
    0.0075523397 = product of:
      0.041537866 = sum of:
        0.01939093 = weight(_text_:of in 5068) [ClassicSimilarity], result of:
          0.01939093 = score(doc=5068,freq=6.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.3591007 = fieldWeight in 5068, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=5068)
        0.022146935 = weight(_text_:on in 5068) [ClassicSimilarity], result of:
          0.022146935 = score(doc=5068,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 5068, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=5068)
      0.18181819 = coord(2/11)
    
    Source
    Journal of the American Society for Information Science. 45(1994) no.6, S.422-427
  12. Egghe, L.; Ravichandra Rao, I.K.: Study of different h-indices for groups of authors (2008) 0.01
    0.0074022426 = product of:
      0.040712334 = sum of:
        0.018565401 = weight(_text_:of in 1878) [ClassicSimilarity], result of:
          0.018565401 = score(doc=1878,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34381276 = fieldWeight in 1878, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1878)
        0.022146935 = weight(_text_:on in 1878) [ClassicSimilarity], result of:
          0.022146935 = score(doc=1878,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 1878, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1878)
      0.18181819 = coord(2/11)
    
    Abstract
    In this article, for any group of authors, we define three different h-indices. First, there is the successive h-index h2 based on the ranked list of authors and their h-indices h1 as defined by Schubert (2007). Next, there is the h-index hP based on the ranked list of authors and their number of publications. Finally, there is the h-index hC based on the ranked list of authors and their number of citations. We present formulae for these three indices in Lotkaian informetrics from which it also follows that h2 < hp < hc. We give a concrete example of a group of 167 authors on the topic optical flow estimation. Besides these three h-indices, we also calculate the two-by-two Spearman rank correlation coefficient and prove that these rankings are significantly related.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.8, S.1276-1281
  13. Egghe, L.: Expansion of the field of informetrics : the second special issue (2006) 0.01
    0.006905375 = product of:
      0.03797956 = sum of:
        0.015832627 = weight(_text_:of in 7119) [ClassicSimilarity], result of:
          0.015832627 = score(doc=7119,freq=4.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2932045 = fieldWeight in 7119, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=7119)
        0.022146935 = weight(_text_:on in 7119) [ClassicSimilarity], result of:
          0.022146935 = score(doc=7119,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 7119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=7119)
      0.18181819 = coord(2/11)
    
    Footnote
    Einführung in ein "Special Issue on Informetrics"
  14. Egghe, L.: Expansion of the field of informetrics : origins and consequences (2005) 0.01
    0.006905375 = product of:
      0.03797956 = sum of:
        0.015832627 = weight(_text_:of in 1910) [ClassicSimilarity], result of:
          0.015832627 = score(doc=1910,freq=4.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2932045 = fieldWeight in 1910, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=1910)
        0.022146935 = weight(_text_:on in 1910) [ClassicSimilarity], result of:
          0.022146935 = score(doc=1910,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 1910, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=1910)
      0.18181819 = coord(2/11)
    
    Footnote
    Einführung in ein "Special Issue on Infometrics"
  15. Egghe, L.: Note on a possible decomposition of the h-Index (2013) 0.01
    0.006905375 = product of:
      0.03797956 = sum of:
        0.015832627 = weight(_text_:of in 683) [ClassicSimilarity], result of:
          0.015832627 = score(doc=683,freq=4.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2932045 = fieldWeight in 683, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=683)
        0.022146935 = weight(_text_:on in 683) [ClassicSimilarity], result of:
          0.022146935 = score(doc=683,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 683, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=683)
      0.18181819 = coord(2/11)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.4, S.871
  16. Egghe, L.: Theory of the topical coverage of multiple databases (2013) 0.01
    0.0068840305 = product of:
      0.037862167 = sum of:
        0.019591875 = weight(_text_:of in 526) [ClassicSimilarity], result of:
          0.019591875 = score(doc=526,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.36282203 = fieldWeight in 526, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=526)
        0.01827029 = weight(_text_:on in 526) [ClassicSimilarity], result of:
          0.01827029 = score(doc=526,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24056101 = fieldWeight in 526, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=526)
      0.18181819 = coord(2/11)
    
    Abstract
    We present a model that describes which fraction of the literature on a certain topic we will find when we use n (n = 1, 2, .) databases. It is a generalization of the theory of discovering usability problems. We prove that, in all practical cases, this fraction is a concave function of n, the number of used databases, thereby explaining some graphs that exist in the literature. We also study limiting features of this fraction for n very high and we characterize the case that we find all literature on a certain topic for n high enough.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.1, S.126-131
  17. Egghe, L.: On the law of Zipf-Mandelbrot for multi-word phrases (1999) 0.01
    0.006755516 = product of:
      0.037155338 = sum of:
        0.022390714 = weight(_text_:of in 3058) [ClassicSimilarity], result of:
          0.022390714 = score(doc=3058,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.41465375 = fieldWeight in 3058, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3058)
        0.014764623 = weight(_text_:on in 3058) [ClassicSimilarity], result of:
          0.014764623 = score(doc=3058,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.19440265 = fieldWeight in 3058, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=3058)
      0.18181819 = coord(2/11)
    
    Abstract
    This article studies the probabilities of the occurence of multi-word (m-word) phrases (m=2,3,...) in relation to the probabilities of occurence of the single words. It is well known that, in the latter case, the lae of Zipf is valid (i.e., a power law). We prove that in the case of m-word phrases (m>=2), this is not the case. We present 2 independent proof of this
    Source
    Journal of the American Society for Information Science. 50(1999) no.3, S.233-241
  18. Egghe, L.: ¬A noninformetric analysis of the relationship between citation age and journal productivity (2001) 0.01
    0.006719455 = product of:
      0.036957003 = sum of:
        0.014810067 = weight(_text_:of in 5685) [ClassicSimilarity], result of:
          0.014810067 = score(doc=5685,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2742677 = fieldWeight in 5685, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5685)
        0.022146935 = weight(_text_:on in 5685) [ClassicSimilarity], result of:
          0.022146935 = score(doc=5685,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 5685, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5685)
      0.18181819 = coord(2/11)
    
    Abstract
    A problem, raised by Wallace (JASIS, 37,136-145,1986), on the relation between the journal's median citation age and its number of articles is studied. Leaving open the problem as such, we give a statistical explanation of this relationship, when replacing "median" by "mean" in Wallace's problem. The cloud of points, found by Wallace, is explained in this sense that the points are scattered over the area in first quadrant, limited by a curve of the form y=1 + E/x**2 where E is a constant. This curve is obtained by using the Central Limit Theorem in statistics and, hence, has no intrinsic informetric foundation. The article closes with some reflections on explanations of regularities in informetrics, based on statistical, probabilistic or informetric results, or on a combination thereof
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.5, S.371-377
  19. Egghe, L.: Influence of adding or deleting items and sources on the h-index (2010) 0.01
    0.006719455 = product of:
      0.036957003 = sum of:
        0.014810067 = weight(_text_:of in 3336) [ClassicSimilarity], result of:
          0.014810067 = score(doc=3336,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2742677 = fieldWeight in 3336, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3336)
        0.022146935 = weight(_text_:on in 3336) [ClassicSimilarity], result of:
          0.022146935 = score(doc=3336,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 3336, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3336)
      0.18181819 = coord(2/11)
    
    Abstract
    Adding or deleting items such as self-citations has an influence on the h-index of an author. This influence will be proved mathematically in this article. We hereby prove the experimental finding in E. Gianoli and M.A. Molina-Montenegro ([2009]) that the influence of adding or deleting self-citations on the h-index is greater for low values of the h-index. Why this is logical also is shown by a simple theoretical example. Adding or deleting sources such as adding or deleting minor contributions of an author also has an influence on the h-index of this author; this influence is modeled in this article. This model explains some practical examples found in X. Hu, R. Rousseau, and J. Chen (in press).
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.370-373
  20. Egghe, L.: On the relation between the association strength and other similarity measures (2010) 0.01
    0.0065687574 = product of:
      0.036128163 = sum of:
        0.010555085 = weight(_text_:of in 3598) [ClassicSimilarity], result of:
          0.010555085 = score(doc=3598,freq=4.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.19546966 = fieldWeight in 3598, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3598)
        0.025573079 = weight(_text_:on in 3598) [ClassicSimilarity], result of:
          0.025573079 = score(doc=3598,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.33671528 = fieldWeight in 3598, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=3598)
      0.18181819 = coord(2/11)
    
    Abstract
    A graph in van Eck and Waltman [JASIST, 60(8), 2009, p. 1644], representing the relation between the association strength and the cosine, is partially explained as a sheaf of parabolas, each parabola being the functional relation between these similarity measures on the trajectories x*y=a, a constant. Based on earlier obtained relations between cosine and other similarity measures (e.g., Jaccard index), we can prove new relations between the association strength and these other measures.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.7, S.1502-1504