Search (34 results, page 1 of 2)

  • × author_ss:"Jansen, B.J."
  1. Jansen, B.J.; Liu, Z.; Simon, Z.: ¬The effect of ad rank on the performance of keyword advertising campaigns (2013) 0.10
    0.09512625 = product of:
      0.2615972 = sum of:
        0.05263353 = weight(_text_:higher in 1095) [ClassicSimilarity], result of:
          0.05263353 = score(doc=1095,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 1095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
        0.16054934 = weight(_text_:effect in 1095) [ClassicSimilarity], result of:
          0.16054934 = score(doc=1095,freq=18.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.87780064 = fieldWeight in 1095, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
        0.019233186 = weight(_text_:of in 1095) [ClassicSimilarity], result of:
          0.019233186 = score(doc=1095,freq=34.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.35617945 = fieldWeight in 1095, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
        0.029181147 = weight(_text_:on in 1095) [ClassicSimilarity], result of:
          0.029181147 = score(doc=1095,freq=20.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.38422197 = fieldWeight in 1095, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
      0.36363637 = coord(4/11)
    
    Abstract
    The goal of this research is to evaluate the effect of ad rank on the performance of keyword advertising campaigns. We examined a large-scale data file comprised of nearly 7,000,000 records spanning 33 consecutive months of a major US retailer's search engine marketing campaign. The theoretical foundation is serial position effect to explain searcher behavior when interacting with ranked ad listings. We control for temporal effects and use one-way analysis of variance (ANOVA) with Tamhane's T2 tests to examine the effect of ad rank on critical keyword advertising metrics, including clicks, cost-per-click, sales revenue, orders, items sold, and advertising return on investment. Our findings show significant ad rank effect on most of those metrics, although less effect on conversion rates. A primacy effect was found on both clicks and sales, indicating a general compelling performance of top-ranked ads listed on the first results page. Conversion rates, on the other hand, follow a relatively stable distribution except for the top 2 ads, which had significantly higher conversion rates. However, examining conversion potential (the effect of both clicks and conversion rate), we show that ad rank has a significant effect on the performance of keyword advertising campaigns. Conversion potential is a more accurate measure of the impact of an ad's position. In fact, the first ad position generates about 80% of the total profits, after controlling for advertising costs. In addition to providing theoretical grounding, the research results reported in this paper are beneficial to companies using search engine marketing as they strive to design more effective advertising campaigns.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.10, S.2115-2132
  2. Jansen, B.J.; Booth, D.L.; Smith, B.K.: Using the taxonomy of cognitive learning to model online searching (2009) 0.05
    0.049221564 = product of:
      0.1353593 = sum of:
        0.05263353 = weight(_text_:higher in 4223) [ClassicSimilarity], result of:
          0.05263353 = score(doc=4223,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 4223, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4223)
        0.053516448 = weight(_text_:effect in 4223) [ClassicSimilarity], result of:
          0.053516448 = score(doc=4223,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.2926002 = fieldWeight in 4223, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4223)
        0.016159108 = weight(_text_:of in 4223) [ClassicSimilarity], result of:
          0.016159108 = score(doc=4223,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2992506 = fieldWeight in 4223, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4223)
        0.013050207 = weight(_text_:on in 4223) [ClassicSimilarity], result of:
          0.013050207 = score(doc=4223,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.1718293 = fieldWeight in 4223, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4223)
      0.36363637 = coord(4/11)
    
    Abstract
    In this research, we investigated whether a learning process has unique information searching characteristics. The results of this research show that information searching is a learning process with unique searching characteristics specific to particular learning levels. In a laboratory experiment, we studied the searching characteristics of 72 participants engaged in 426 searching tasks. We classified the searching tasks according to Anderson and Krathwohl's taxonomy of the cognitive learning domain. Research results indicate that applying and analyzing, the middle two of the six categories, generally take the most searching effort in terms of queries per session, topics searched per session, and total time searching. Interestingly, the lowest two learning categories, remembering and understanding, exhibit searching characteristics similar to the highest order learning categories of evaluating and creating. Our results suggest the view of Web searchers having simple information needs may be incorrect. Instead, we discovered that users applied simple searching expressions to support their higher-level information needs. It appears that searchers rely primarily on their internal knowledge for evaluating and creating information needs, using search primarily for fact checking and verification. Overall, results indicate that a learning theory may better describe the information searching process than more commonly used paradigms of decision making or problem solving. The learning style of the searcher does have some moderating effect on exhibited searching characteristics. The implication of this research is that rather than solely addressing a searcher's expressed information need, searching systems can also address the underlying learning need of the user.
  3. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.04
    0.038848966 = product of:
      0.10683466 = sum of:
        0.06316024 = weight(_text_:higher in 2742) [ClassicSimilarity], result of:
          0.06316024 = score(doc=2742,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.34821182 = fieldWeight in 2742, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.018565401 = weight(_text_:of in 2742) [ClassicSimilarity], result of:
          0.018565401 = score(doc=2742,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34381276 = fieldWeight in 2742, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.011073467 = weight(_text_:on in 2742) [ClassicSimilarity], result of:
          0.011073467 = score(doc=2742,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 2742, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.014035545 = product of:
          0.02807109 = sum of:
            0.02807109 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
              0.02807109 = score(doc=2742,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.23214069 = fieldWeight in 2742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.5 = coord(1/2)
      0.36363637 = coord(4/11)
    
    Abstract
    In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing.
    Date
    22. 3.2009 17:49:11
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.3, S.557-570
  4. Jansen, B.J.; Zhang, M.; Schultz, C.D.: Brand and its effect on user perception of search engine performance (2009) 0.04
    0.03696935 = product of:
      0.13555427 = sum of:
        0.107032895 = weight(_text_:effect in 2948) [ClassicSimilarity], result of:
          0.107032895 = score(doc=2948,freq=8.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.5852004 = fieldWeight in 2948, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2948)
        0.015471167 = weight(_text_:of in 2948) [ClassicSimilarity], result of:
          0.015471167 = score(doc=2948,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.28651062 = fieldWeight in 2948, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2948)
        0.013050207 = weight(_text_:on in 2948) [ClassicSimilarity], result of:
          0.013050207 = score(doc=2948,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.1718293 = fieldWeight in 2948, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2948)
      0.27272728 = coord(3/11)
    
    Abstract
    In this research we investigate the effect of search engine brand on the evaluation of searching performance. Our research is motivated by the large amount of search traffic directed to a handful of Web search engines, even though many have similar interfaces and performance. We conducted a laboratory experiment with 32 participants using a 42 factorial design confounded in four blocks to measure the effect of four search engine brands (Google, MSN, Yahoo!, and a locally developed search engine) while controlling for the quality and presentation of search engine results. We found brand indeed played a role in the searching process. Brand effect varied in different domains. Users seemed to place a high degree of trust in major search engine brands; however, they were more engaged in the searching process when using lesser-known search engines. It appears that branding affects overall Web search at four stages: (a) search engine selection, (b) search engine results page evaluation, (c) individual link evaluation, and (d) evaluation of the landing page. We discuss the implications for search engine marketing and the design of empirical studies measuring search engine performance.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1572-1595
  5. Jansen, B.J.; Resnick, M.: ¬An examination of searcher's perceptions of nonsponsored and sponsored links during ecommerce Web searching (2006) 0.02
    0.024874201 = product of:
      0.0912054 = sum of:
        0.053516448 = weight(_text_:effect in 221) [ClassicSimilarity], result of:
          0.053516448 = score(doc=221,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.2926002 = fieldWeight in 221, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=221)
        0.019233186 = weight(_text_:of in 221) [ClassicSimilarity], result of:
          0.019233186 = score(doc=221,freq=34.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.35617945 = fieldWeight in 221, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=221)
        0.018455777 = weight(_text_:on in 221) [ClassicSimilarity], result of:
          0.018455777 = score(doc=221,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 221, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=221)
      0.27272728 = coord(3/11)
    
    Abstract
    In this article, we report results of an investigation into the effect of sponsored links on ecommerce information seeking on the Web. In this research, 56 participants each engaged in six ecommerce Web searching tasks. We extracted these tasks from the transaction log of a Web search engine, so they represent actual ecommerce searching information needs. Using 60 organic and 30 sponsored Web links, the quality of the Web search engine results was controlled by switching nonsponsored and sponsored links on half of the tasks for each participant. This allowed for investigating the bias toward sponsored links while controlling for quality of content. The study also investigated the relationship between searching self-efficacy, searching experience, types of ecommerce information needs, and the order of links on the viewing of sponsored links. Data included 2,453 interactions with links from result pages and 961 utterances evaluating these links. The results of the study indicate that there is a strong preference for nonsponsored links, with searchers viewing these results first more than 82% of the time. Searching self-efficacy and experience does not increase the likelihood of viewing sponsored links, and the order of the result listing does not appear to affect searcher evaluation of sponsored links. The implications for sponsored links as a long-term business model are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.14, S.1949-1961
  6. Jansen, B.J.; Spink, A.; Koshman, S.: Web searcher interaction with the Dogpile.com metasearch engine (2007) 0.02
    0.024785481 = product of:
      0.090880096 = sum of:
        0.05263353 = weight(_text_:higher in 270) [ClassicSimilarity], result of:
          0.05263353 = score(doc=270,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=270)
        0.019790784 = weight(_text_:of in 270) [ClassicSimilarity], result of:
          0.019790784 = score(doc=270,freq=36.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.36650562 = fieldWeight in 270, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=270)
        0.018455777 = weight(_text_:on in 270) [ClassicSimilarity], result of:
          0.018455777 = score(doc=270,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 270, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=270)
      0.27272728 = coord(3/11)
    
    Abstract
    Metasearch engines are an intuitive method for improving the performance of Web search by increasing coverage, returning large numbers of results with a focus on relevance, and presenting alternative views of information needs. However, the use of metasearch engines in an operational environment is not well understood. In this study, we investigate the usage of Dogpile.com, a major Web metasearch engine, with the aim of discovering how Web searchers interact with metasearch engines. We report results examining 2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005 and compare these results with findings from other Web searching studies. We collect data on geographical location of searchers, use of system feedback, content selection, sessions, queries, and term usage. Findings show that Dogpile.com searchers are mainly from the USA (84% of searchers), use about 3 terms per query (mean = 2.85), implement system feedback moderately (8.4% of users), and generally (56% of users) spend less than one minute interacting with the Web search engine. Overall, metasearchers seem to have higher degrees of interaction than searchers on non-metasearch engines, but their sessions are for a shorter period of time. These aspects of metasearching may be what define the differences from other forms of Web searching. We discuss the implications of our findings in relation to metasearch for Web searchers, search engines, and content providers.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.5, S.744-755
  7. Jansen, B.J.; Booth, D.L.; Spink, A.: Patterns of query reformulation during Web searching (2009) 0.01
    0.01453696 = product of:
      0.079953276 = sum of:
        0.06316024 = weight(_text_:higher in 2936) [ClassicSimilarity], result of:
          0.06316024 = score(doc=2936,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.34821182 = fieldWeight in 2936, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.046875 = fieldNorm(doc=2936)
        0.016793035 = weight(_text_:of in 2936) [ClassicSimilarity], result of:
          0.016793035 = score(doc=2936,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.3109903 = fieldWeight in 2936, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2936)
      0.18181819 = coord(2/11)
    
    Abstract
    Query reformulation is a key user behavior during Web search. Our research goal is to develop predictive models of query reformulation during Web searching. This article reports results from a study in which we automatically classified the query-reformulation patterns for 964,780 Web searching sessions, composed of 1,523,072 queries, to predict the next query reformulation. We employed an n-gram modeling approach to describe the probability of users transitioning from one query-reformulation state to another to predict their next state. We developed first-, second-, third-, and fourth-order models and evaluated each model for accuracy of prediction, coverage of the dataset, and complexity of the possible pattern set. The results show that Reformulation and Assistance account for approximately 45% of all query reformulations; furthermore, the results demonstrate that the first- and second-order models provide the best predictability, between 28 and 40% overall and higher than 70% for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1358-1371
  8. Spink, A.; Jansen, B.J.; Pedersen , J.: Searching for people on Web search engines (2004) 0.01
    0.006983436 = product of:
      0.038408898 = sum of:
        0.0139941955 = weight(_text_:of in 4429) [ClassicSimilarity], result of:
          0.0139941955 = score(doc=4429,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.25915858 = fieldWeight in 4429, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4429)
        0.024414703 = weight(_text_:on in 4429) [ClassicSimilarity], result of:
          0.024414703 = score(doc=4429,freq=14.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.3214632 = fieldWeight in 4429, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4429)
      0.18181819 = coord(2/11)
    
    Abstract
    The Web is a communication and information technology that is often used for the distribution and retrieval of personal information. Many people and organizations mount Web sites containing large amounts of information on individuals, particularly about celebrities. However, limited studies have examined how people search for information on other people, using personal names, via Web search engines. Explores the nature of personal name searching on Web search engines. The specific research questions addressed in the study are: "Do personal names form a major part of queries to Web search engines?"; "What are the characteristics of personal name Web searching?"; and "How effective is personal name Web searching?". Random samples of queries from two Web search engines were analyzed. The findings show that: personal name searching is a common but not a major part of Web searching with few people seeking information on celebrities via Web search engines; few personal name queries include double quotations or additional identifying terms; and name searches on Alta Vista included more advanced search features relative to those on AlltheWeb.com. Discusses the implications of the findings for Web searching and search engines, and further research.
    Source
    Journal of documentation. 60(2004) no.3, S.266-278
  9. Jansen, B.J.; Spink, A.; Blakely, C.; Koshman, S.: Defining a session on Web search engines (2007) 0.01
    0.006689691 = product of:
      0.0367933 = sum of:
        0.016159108 = weight(_text_:of in 285) [ClassicSimilarity], result of:
          0.016159108 = score(doc=285,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2992506 = fieldWeight in 285, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=285)
        0.02063419 = weight(_text_:on in 285) [ClassicSimilarity], result of:
          0.02063419 = score(doc=285,freq=10.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.271686 = fieldWeight in 285, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=285)
      0.18181819 = coord(2/11)
    
    Abstract
    Detecting query reformulations within a session by a Web searcher is an important area of research for designing more helpful searching systems and targeting content to particular users. Methods explored by other researchers include both qualitative (i.e., the use of human judges to manually analyze query patterns on usually small samples) and nondeterministic algorithms, typically using large amounts of training data to predict query modification during sessions. In this article, we explore three alternative methods for detection of session boundaries. All three methods are computationally straightforward and therefore easily implemented for detection of session changes. We examine 2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005. We compare session analysis using (a) Internet Protocol address and cookie; (b) Internet Protocol address, cookie, and a temporal limit on intrasession interactions; and (c) Internet Protocol address, cookie, and query reformulation patterns. Overall, our analysis shows that defining sessions by query reformulation along with Internet Protocol address and cookie provides the best measure, resulting in an 82% increase in the count of sessions. Regardless of the method used, the mean session length was fewer than three queries, and the mean session duration was less than 30 min. Searchers most often modified their query by changing query terms (nearly 23% of all query modifications) rather than adding or deleting terms. Implications are that for measuring searching traffic, unique sessions may be a better indicator than the common metric of unique visitors. This research also sheds light on the more complex aspects of Web searching involving query modifications and may lead to advances in searching tools.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.6, S.862-871
  10. Koshman, S.; Spink, A.; Jansen, B.J.: Web searching on the Vivisimo search engine (2006) 0.01
    0.006413583 = product of:
      0.035274707 = sum of:
        0.016818931 = weight(_text_:of in 216) [ClassicSimilarity], result of:
          0.016818931 = score(doc=216,freq=26.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.31146988 = fieldWeight in 216, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=216)
        0.018455777 = weight(_text_:on in 216) [ClassicSimilarity], result of:
          0.018455777 = score(doc=216,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 216, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=216)
      0.18181819 = coord(2/11)
    
    Abstract
    The application of clustering to Web search engine technology is a novel approach that offers structure to the information deluge often faced by Web searchers. Clustering methods have been well studied in research labs; however, real user searching with clustering systems in operational Web environments is not well understood. This article reports on results from a transaction log analysis of Vivisimo.com, which is a Web meta-search engine that dynamically clusters users' search results. A transaction log analysis was conducted on 2-week's worth of data collected from March 28 to April 4 and April 25 to May 2, 2004, representing 100% of site traffic during these periods and 2,029,734 queries overall. The results show that the highest percentage of queries contained two terms. The highest percentage of search sessions contained one query and was less than 1 minute in duration. Almost half of user interactions with clusters consisted of displaying a cluster's result set, and a small percentage of interactions showed cluster tree expansion. Findings show that 11.1% of search sessions were multitasking searches, and there are a broad variety of search topics in multitasking search sessions. Other searching interactions and statistics on repeat users of the search engine are reported. These results provide insights into search characteristics with a cluster-based Web search engine and extend research into Web searching trends.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.14, S.1875-1887
  11. Jansen, B.J.: Searching for digital images on the web (2008) 0.01
    0.006413583 = product of:
      0.035274707 = sum of:
        0.016818931 = weight(_text_:of in 1730) [ClassicSimilarity], result of:
          0.016818931 = score(doc=1730,freq=26.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.31146988 = fieldWeight in 1730, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1730)
        0.018455777 = weight(_text_:on in 1730) [ClassicSimilarity], result of:
          0.018455777 = score(doc=1730,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 1730, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1730)
      0.18181819 = coord(2/11)
    
    Abstract
    Purpose - The purpose of this paper is to examine the way in which end user searching on the web has become the primary method of locating digital images for many people. This paper seeks to investigate how users structure these image queries. Design/methodology/approach - This study investigates the structure and formation of image queries on the web by mapping a sample of web queries to three known query classification schemes for image searching (i.e. Enser and McGregor, Jörgensen, and Chen). Findings - The results indicate that the features and attributes of web image queries differ relative to image queries utilized on other information retrieval systems and by other user populations. This research points to the need for five additional attributes (i.e. collections, pornography, presentation, URL, and cost) in order to classify web image queries, which were not present in any of the three prior classification schemes. Research limitations/implications - Patterns in web searching for image content do emerge that inform the design of web-based multimedia systems, namely, that there is a high interest in locating image collections by web searchers. Objects and people images are the predominant interest for web searchers. Cost is a factor for web searching. This knowledge of the structure of web image queries has implications for the design of image information retrieval systems and repositories, especially in the area of automatic tagging of images with metadata. Originality/value - This is the first research that examines whether or not one can apply image query classifications schemes to web image queries.
    Source
    Journal of documentation. 64(2008) no.1, S.81-101
  12. Liu, Z.; Jansen, B.J.: ASK: A taxonomy of accuracy, social, and knowledge information seeking posts in social question and answering (2017) 0.01
    0.0061685354 = product of:
      0.033926945 = sum of:
        0.015471167 = weight(_text_:of in 3345) [ClassicSimilarity], result of:
          0.015471167 = score(doc=3345,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.28651062 = fieldWeight in 3345, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3345)
        0.018455777 = weight(_text_:on in 3345) [ClassicSimilarity], result of:
          0.018455777 = score(doc=3345,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 3345, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3345)
      0.18181819 = coord(2/11)
    
    Abstract
    Many people turn to their social networks to find information through the practice of question and answering. We believe it is necessary to use different answering strategies based on the type of questions to accommodate the different information needs. In this research, we propose the ASK taxonomy that categorizes questions posted on social networking sites into three types according to the nature of the questioner's inquiry of accuracy, social, or knowledge. To automatically decide which answering strategy to use, we develop a predictive model based on ASK question types using question features from the perspectives of lexical, topical, contextual, and syntactic as well as answer features. By applying the classifier on an annotated data set, we present a comprehensive analysis to compare questions in terms of their word usage, topical interests, temporal and spatial restrictions, syntactic structure, and response characteristics. Our research results show that the three types of questions exhibited different characteristics in the way they are asked. Our automatic classification algorithm achieves an 83% correct labeling result, showing the value of the ASK taxonomy for the design of social question and answering systems.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.2, S.333-347
  13. Spink, A.; Park, M.; Jansen, B.J.; Pedersen, J.: Elicitation and use of relevance feedback information (2006) 0.01
    0.006079456 = product of:
      0.033437006 = sum of:
        0.01745383 = weight(_text_:of in 967) [ClassicSimilarity], result of:
          0.01745383 = score(doc=967,freq=28.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.32322758 = fieldWeight in 967, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=967)
        0.015983174 = weight(_text_:on in 967) [ClassicSimilarity], result of:
          0.015983174 = score(doc=967,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 967, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=967)
      0.18181819 = coord(2/11)
    
    Abstract
    A user's single session with a Web search engine or information retrieval (IR) system may consist of seeking information on single or multiple topics, and switch between tasks or multitasking information behavior. Most Web search sessions consist of two queries of approximately two words. However, some Web search sessions consist of three or more queries. We present findings from two studies. First, a study of two-query search sessions on the AltaVista Web search engine, and second, a study of three or more query search sessions on the AltaVista Web search engine. We examine the degree of multitasking search and information task switching during these two sets of AltaVista Web search sessions. A sample of two-query and three or more query sessions were filtered from AltaVista transaction logs from 2002 and qualitatively analyzed. Sessions ranged in duration from less than a minute to a few hours. Findings include: (1) 81% of two-query sessions included multiple topics, (2) 91.3% of three or more query sessions included multiple topics, (3) there are a broad variety of topics in multitasking search sessions, and (4) three or more query sessions sometimes contained frequent topic changes. Multitasking is found to be a growing element in Web searching. This paper proposes an approach to interactive information retrieval (IR) contextually within a multitasking framework. The implications of our findings for Web design and further research are discussed.
  14. Jansen, B.J.; Spink, A.; Saracevic, T.: Real life, real users and real needs : a study and analysis of users queries on the Web (2000) 0.01
    0.0060622357 = product of:
      0.033342294 = sum of:
        0.011195358 = weight(_text_:of in 411) [ClassicSimilarity], result of:
          0.011195358 = score(doc=411,freq=2.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.20732689 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=411)
        0.022146935 = weight(_text_:on in 411) [ClassicSimilarity], result of:
          0.022146935 = score(doc=411,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=411)
      0.18181819 = coord(2/11)
    
  15. Reddy, M.C.; Jansen, B.J.: ¬A model for understanding collaborative information behavior in context : a study of two healthcare teams (2008) 0.01
    0.005682943 = product of:
      0.031256184 = sum of:
        0.020182718 = weight(_text_:of in 2033) [ClassicSimilarity], result of:
          0.020182718 = score(doc=2033,freq=26.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.37376386 = fieldWeight in 2033, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2033)
        0.011073467 = weight(_text_:on in 2033) [ClassicSimilarity], result of:
          0.011073467 = score(doc=2033,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 2033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2033)
      0.18181819 = coord(2/11)
    
    Abstract
    Collaborative information behavior is an essential aspect of organizational work; however, we have very limited understanding of this behavior. Most models of information behavior focus on the individual seeker of information. In this paper, we report the results from two empirical studies that investigate aspects of collaborative information behavior in organizational settings. From these studies, we found that collaborative information behavior differs from individual information behavior with respect to how individuals interact with each other, the complexity of the information need, and the role of information technology. There are specific triggers for transitioning from individual to collaborative information behavior, including lack of domain expertise. The information retrieval technologies used affect collaborative information behavior by acting as important supporting mechanisms. From these results and prior work, we develop a model of collaborative information behavior along the axes of participant behavior, situational elements, and contextual triggers. We also present characteristics of collaborative information system including search, chat, and sharing. We discuss implications for the design of collaborative information retrieval systems and directions for future work.
  16. Ortiz-Cordova, A.; Yang, Y.; Jansen, B.J.: External to internal search : associating searching on search engines with searching on sites (2015) 0.01
    0.0054330896 = product of:
      0.029881991 = sum of:
        0.011426214 = weight(_text_:of in 2675) [ClassicSimilarity], result of:
          0.011426214 = score(doc=2675,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.21160212 = fieldWeight in 2675, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2675)
        0.018455777 = weight(_text_:on in 2675) [ClassicSimilarity], result of:
          0.018455777 = score(doc=2675,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 2675, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2675)
      0.18181819 = coord(2/11)
    
    Abstract
    We analyze the transitions from external search, searching on web search engines, to internal search, searching on websites. We categorize 295,571 search episodes composed of a query submitted to web search engines and the subsequent queries submitted to a single website search by the same users. There are a total of 1,136,390 queries from all searches, of which 295,571 are external search queries and 840,819 are internal search queries. We algorithmically classify queries into states and then use n-grams to categorize search patterns. We cluster the searching episodes into major patterns and identify the most commonly occurring, which are: (1) Explorers (43% of all patterns) with a broad external search query and then broad internal search queries, (2) Navigators (15%) with an external search query containing a URL component and then specific internal search queries, and (3) Shifters (15%) with a different, seemingly unrelated, query types when transitioning from external to internal search. The implications of this research are that external search and internal search sessions are part of a single search episode and that online businesses can leverage these search episodes to more effectively target potential customers.
  17. Jansen, B.J.; Spink, A.: How are we searching the World Wide Web? : A comparison of nine search engine transaction logs (2006) 0.01
    0.005310785 = product of:
      0.029209316 = sum of:
        0.016159108 = weight(_text_:of in 968) [ClassicSimilarity], result of:
          0.016159108 = score(doc=968,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2992506 = fieldWeight in 968, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=968)
        0.013050207 = weight(_text_:on in 968) [ClassicSimilarity], result of:
          0.013050207 = score(doc=968,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.1718293 = fieldWeight in 968, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=968)
      0.18181819 = coord(2/11)
    
    Abstract
    The Web and especially major Web search engines are essential tools in the quest to locate online information for many people. This paper reports results from research that examines characteristics and changes in Web searching from nine studies of five Web search engines based in the US and Europe. We compare interactions occurring between users and Web search engines from the perspectives of session length, query length, query complexity, and content viewed among the Web search engines. The results of our research shows (1) users are viewing fewer result pages, (2) searchers on US-based Web search engines use more query operators than searchers on European-based search engines, (3) there are statistically significant differences in the use of Boolean operators and result pages viewed, and (4) one cannot necessary apply results from studies of one particular Web search engine to another Web search engine. The wide spread use of Web search engines, employment of simple queries, and decreased viewing of result pages may have resulted from algorithmic enhancements by Web search engine companies. We discuss the implications of the findings for the development of Web search engines and design of online content.
  18. Coughlin, D.M.; Campbell, M.C.; Jansen, B.J.: ¬A web analytics approach for appraising electronic resources in academic libraries (2016) 0.01
    0.005310785 = product of:
      0.029209316 = sum of:
        0.016159108 = weight(_text_:of in 2770) [ClassicSimilarity], result of:
          0.016159108 = score(doc=2770,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2992506 = fieldWeight in 2770, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2770)
        0.013050207 = weight(_text_:on in 2770) [ClassicSimilarity], result of:
          0.013050207 = score(doc=2770,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.1718293 = fieldWeight in 2770, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2770)
      0.18181819 = coord(2/11)
    
    Abstract
    University libraries provide access to thousands of journals and spend millions of dollars annually on electronic resources. With several commercial entities providing these electronic resources, the result can be silo systems and processes to evaluate cost and usage of these resources, making it difficult to provide meaningful analytics. In this research, we examine a subset of journals from a large research library using a web analytics approach with the goal of developing a framework for the analysis of library subscriptions. This foundational approach is implemented by comparing the impact to the cost, titles, and usage for the subset of journals and by assessing the funding area. Overall, the results highlight the benefit of a web analytics evaluation framework for university libraries and the impact of classifying titles based on the funding area. Furthermore, they show the statistical difference in both use and cost among the various funding areas when ranked by cost, eliminating the outliers of heavily used and highly expensive journals. Future work includes refining this model for a larger scale analysis tying metrics to library organizational objectives and for the creation of an online application to automate this analysis.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.518-534
  19. Jansen, B.J.; Molina, P.R.: ¬The effectiveness of Web search engines for retrieving relevant ecommerce links (2006) 0.01
    0.005231797 = product of:
      0.028774884 = sum of:
        0.017701415 = weight(_text_:of in 983) [ClassicSimilarity], result of:
          0.017701415 = score(doc=983,freq=20.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.32781258 = fieldWeight in 983, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=983)
        0.011073467 = weight(_text_:on in 983) [ClassicSimilarity], result of:
          0.011073467 = score(doc=983,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 983, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=983)
      0.18181819 = coord(2/11)
    
    Abstract
    Ecommerce is developing into a fast-growing channel for new business, so a strong presence in this domain could prove essential to the success of numerous commercial organizations. However, there is little research examining ecommerce at the individual customer level, particularly on the success of everyday ecommerce searches. This is critical for the continued success of online commerce. The purpose of this research is to evaluate the effectiveness of search engines in the retrieval of relevant ecommerce links. The study examines the effectiveness of five different types of search engines in response to ecommerce queries by comparing the engines' quality of ecommerce links using topical relevancy ratings. This research employs 100 ecommerce queries, five major search engines, and more than 3540 Web links. The findings indicate that links retrieved using an ecommerce search engine are significantly better than those obtained from most other engines types but do not significantly differ from links obtained from a Web directory service. We discuss the implications for Web system design and ecommerce marketing campaigns.
  20. Ortiz-Cordova, A.; Jansen, B.J.: Classifying web search queries to identify high revenue generating customers (2012) 0.01
    0.005231797 = product of:
      0.028774884 = sum of:
        0.017701415 = weight(_text_:of in 279) [ClassicSimilarity], result of:
          0.017701415 = score(doc=279,freq=20.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.32781258 = fieldWeight in 279, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=279)
        0.011073467 = weight(_text_:on in 279) [ClassicSimilarity], result of:
          0.011073467 = score(doc=279,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=279)
      0.18181819 = coord(2/11)
    
    Abstract
    Traffic from search engines is important for most online businesses, with the majority of visitors to many websites being referred by search engines. Therefore, an understanding of this search engine traffic is critical to the success of these websites. Understanding search engine traffic means understanding the underlying intent of the query terms and the corresponding user behaviors of searchers submitting keywords. In this research, using 712,643 query keywords from a popular Spanish music website relying on contextual advertising as its business model, we use a k-means clustering algorithm to categorize the referral keywords with similar characteristics of onsite customer behavior, including attributes such as clickthrough rate and revenue. We identified 6 clusters of consumer keywords. Clusters range from a large number of users who are low impact to a small number of high impact users. We demonstrate how online businesses can leverage this segmentation clustering approach to provide a more tailored consumer experience. Implications are that businesses can effectively segment customers to develop better business models to increase advertising conversion rates.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1426-1441