Search (56 results, page 1 of 3)

  • × author_ss:"Rousseau, R."
  1. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.08
    0.08063108 = product of:
      0.17738837 = sum of:
        0.06316024 = weight(_text_:higher in 5270) [ClassicSimilarity], result of:
          0.06316024 = score(doc=5270,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.34821182 = fieldWeight in 5270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.064219736 = weight(_text_:effect in 5270) [ClassicSimilarity], result of:
          0.064219736 = score(doc=5270,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.35112026 = fieldWeight in 5270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.016793035 = weight(_text_:of in 5270) [ClassicSimilarity], result of:
          0.016793035 = score(doc=5270,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.3109903 = fieldWeight in 5270, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.01917981 = weight(_text_:on in 5270) [ClassicSimilarity], result of:
          0.01917981 = score(doc=5270,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.25253648 = fieldWeight in 5270, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.014035545 = product of:
          0.02807109 = sum of:
            0.02807109 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
              0.02807109 = score(doc=5270,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.23214069 = fieldWeight in 5270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5270)
          0.5 = coord(1/2)
      0.45454547 = coord(5/11)
    
    Abstract
    The age distribution of a country's scientists is an important element in the study of its research capacity. In this article we investigate the age distribution of Japanese scientists in order to find out whether major events such as World War II had an appreciable effect on its features. Data have been obtained from population censuses taken in Japan from 1970 to 1995. A comparison with the situation in China and the United States has been made. We find that the group of scientific researchers outside academia is dominated by the young: those younger than age 35. The personnel group in higher education, on the other hand, is dominated by the baby boomers: those who were born after World War II. Contrary to the Chinese situation we could not find any influence of major nondemographic events. The only influence we found was the increase in enrollment of university students after World War II caused by the reform of the Japanese university system. Female participation in the scientific and university systems in Japan, though still low, is increasing.
    Date
    22. 7.2006 15:26:24
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.342-346
  2. Jin, B.; Li, L.; Rousseau, R.: Long-term influences of interventions in the normal development of science : China and the cultural revolution (2004) 0.05
    0.047020514 = product of:
      0.17240855 = sum of:
        0.064219736 = weight(_text_:effect in 2232) [ClassicSimilarity], result of:
          0.064219736 = score(doc=2232,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.35112026 = fieldWeight in 2232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
        0.016793035 = weight(_text_:of in 2232) [ClassicSimilarity], result of:
          0.016793035 = score(doc=2232,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.3109903 = fieldWeight in 2232, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
        0.09139578 = weight(_text_:technological in 2232) [ClassicSimilarity], result of:
          0.09139578 = score(doc=2232,freq=4.0), product of:
            0.18347798 = queryWeight, product of:
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.034531306 = queryNorm
            0.49812943 = fieldWeight in 2232, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
      0.27272728 = coord(3/11)
    
    Abstract
    Intellectual and technological talents and skills are the driving force for scientific and industrial development, especially in our times characterized by a knowledgebased economy. Major events in society and related political decisions, however, can have a long-term effect an a country's scientific weIl-being. Although the Cultural Revolution took place from 1966 to 1976, its aftermath can still be felt. This is shown by this study of the production and productivity of Chinese scientists as a function of their age. Based an the 1995-2000 data from the Chinese Science Citation database (CSCD), this article investigates the year-by-year age distribution of scientific and technological personnel publishing in China. It is shown that the "Talent Fault" originating during the Cultural Revolution still exists, and that a new gap resulting from recent brain drain might be developing. The purpose of this work is to provide necessary information about the current situation and especially the existing problems of the S&T workforce in China.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.6, S.544-550
  3. Hu, X.; Rousseau, R.; Chen, J.: ¬A new approach for measuring the value of patents based on structural indicators for ego patent citation networks (2012) 0.05
    0.045636624 = product of:
      0.16733429 = sum of:
        0.0184714 = weight(_text_:of in 445) [ClassicSimilarity], result of:
          0.0184714 = score(doc=445,freq=16.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34207192 = fieldWeight in 445, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=445)
        0.1305926 = weight(_text_:technological in 445) [ClassicSimilarity], result of:
          0.1305926 = score(doc=445,freq=6.0), product of:
            0.18347798 = queryWeight, product of:
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.034531306 = queryNorm
            0.7117617 = fieldWeight in 445, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.0546875 = fieldNorm(doc=445)
        0.01827029 = weight(_text_:on in 445) [ClassicSimilarity], result of:
          0.01827029 = score(doc=445,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24056101 = fieldWeight in 445, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=445)
      0.27272728 = coord(3/11)
    
    Abstract
    Technology sectors differ in terms of technological complexity. When studying technology and innovation through patent analysis it is well known that similar amounts of technological knowledge can produce different numbers of patented innovation as output. A new multilayered approach to measure the technological value of patents based on ego patent citation networks (PCNs) is developed in this study. The results show that the structural indicators for the ego PCN developed in this contribution can characterize groups of patents and, hence, in an indirect way, the health of companies.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.9, S.1834-1842
  4. Rousseau, S.; Rousseau, R.: Interactions between journal attributes and authors' willingness to wait for editorial decisions (2012) 0.03
    0.02582456 = product of:
      0.09469005 = sum of:
        0.064219736 = weight(_text_:effect in 250) [ClassicSimilarity], result of:
          0.064219736 = score(doc=250,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.35112026 = fieldWeight in 250, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.046875 = fieldNorm(doc=250)
        0.014810067 = weight(_text_:of in 250) [ClassicSimilarity], result of:
          0.014810067 = score(doc=250,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2742677 = fieldWeight in 250, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=250)
        0.015660247 = weight(_text_:on in 250) [ClassicSimilarity], result of:
          0.015660247 = score(doc=250,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.20619515 = fieldWeight in 250, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=250)
      0.27272728 = coord(3/11)
    
    Abstract
    In this article, we report on a discrete choice experiment to determine the willingness-to-wait (WTW) in the context of journal submissions. Respondents to our survey are mostly active in the information sciences, including librarians. Besides WTW, other attributes included in the study are the quality of the editorial board, the quality of referee reports, the probability of being accepted, the ISI impact factor, and the standing of the journal among peers. Interaction effects originating from scientists' personal characteristics (age, region of origin, motivations to publish) with the WTW are highlighted. A difference was made between submitting a high quality article and a standard article. Among the interesting results obtained from our analysis we mention that for a high-quality article, researchers are willing to wait some 18 months longer for a journal with an ISI impact factor above 2 than for a journal without an impact factor, keeping all other factors constant. For a standard article, the WTW decreases to some 8 months. Gender had no effect on our conclusions.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.6, S.1213-1225
  5. Yang, B.; Rousseau, R.; Wang, X.; Huang, S.: How important is scientific software in bioinformatics research? : a comparative study between international and Chinese research communities (2018) 0.02
    0.022530245 = product of:
      0.0826109 = sum of:
        0.05263353 = weight(_text_:higher in 4461) [ClassicSimilarity], result of:
          0.05263353 = score(doc=4461,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 4461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4461)
        0.0139941955 = weight(_text_:of in 4461) [ClassicSimilarity], result of:
          0.0139941955 = score(doc=4461,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.25915858 = fieldWeight in 4461, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4461)
        0.015983174 = weight(_text_:on in 4461) [ClassicSimilarity], result of:
          0.015983174 = score(doc=4461,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 4461, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4461)
      0.27272728 = coord(3/11)
    
    Abstract
    Software programs are among the most important tools in data-driven research. The popularity of well-known packages and corresponding large numbers of citations received bear testimony of the contribution of scientific software to academic research. Yet software is not generally recognized as an academic outcome. In this study, a usage-based model is proposed with varied indicators including citations, mentions, and downloads to measure the importance of scientific software. We performed an investigation on a sample of international bioinformatics research articles, and on a sample from the Chinese community. Our analysis shows that scientists in the field of bioinformatics rely heavily on scientific software: the major differences between the international community and the Chinese example being how scientific packages are mentioned in publications and the time gap between the introduction of a package and its use. Biologists publishing in international journals tend to apply the latest tools earlier; Chinese scientists publishing in Chinese tend to follow later. Further, journals with higher impact factors tend to publish articles applying the latest tools earlier.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.9, S.1122-1133
  6. Rousseau, R.; Ding, J.: Does international collaboration yield a higher citation potential for US scientists publishing in highly visible interdisciplinary Journals? (2016) 0.02
    0.016052702 = product of:
      0.088289864 = sum of:
        0.07368694 = weight(_text_:higher in 2860) [ClassicSimilarity], result of:
          0.07368694 = score(doc=2860,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.4062471 = fieldWeight in 2860, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2860)
        0.014602924 = weight(_text_:of in 2860) [ClassicSimilarity], result of:
          0.014602924 = score(doc=2860,freq=10.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2704316 = fieldWeight in 2860, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2860)
      0.18181819 = coord(2/11)
    
    Abstract
    Generally, multicountry papers receive more citations than single-country ones. In this contribution, we examine if this rule also applies to American scientists publishing in highly visible interdisciplinary journals. Concretely, we compare the citations received by American scientists in Nature, Science, and the Proceedings of the National Academy of Sciences of the United States of America (PNAS). It is shown that, statistically, American scientists publishing in Nature and Science do not benefit from international collaboration. This statement also holds for communicated submissions, but not for direct and for contributed submissions, to PNAS.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.1009-1013
  7. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.01
    0.013957587 = product of:
      0.05117782 = sum of:
        0.009329465 = weight(_text_:of in 4992) [ClassicSimilarity], result of:
          0.009329465 = score(doc=4992,freq=2.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.17277241 = fieldWeight in 4992, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=4992)
        0.018455777 = weight(_text_:on in 4992) [ClassicSimilarity], result of:
          0.018455777 = score(doc=4992,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 4992, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=4992)
        0.023392577 = product of:
          0.046785153 = sum of:
            0.046785153 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
              0.046785153 = score(doc=4992,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.38690117 = fieldWeight in 4992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Date
    14. 2.2012 12:53:22
    Footnote
    This article corrects: Thoughts on uncitedness: Nobel laureates and Fields medalists as case studies in: JASIST 62(2011) no,8, S.1637-1644.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.429
  8. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.01
    0.012760563 = product of:
      0.04678873 = sum of:
        0.021679718 = weight(_text_:of in 7659) [ClassicSimilarity], result of:
          0.021679718 = score(doc=7659,freq=30.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.4014868 = fieldWeight in 7659, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.011073467 = weight(_text_:on in 7659) [ClassicSimilarity], result of:
          0.011073467 = score(doc=7659,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 7659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.014035545 = product of:
          0.02807109 = sum of:
            0.02807109 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.02807109 = score(doc=7659,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    It is possible, using ISI's Journal Citation Report (JCR), to calculate average impact factors (AIF) for LCR's subject categories but it can be more useful to know the global Impact Factor (GIF) of a subject category and compare the 2 values. Reports results of a study to compare the relationships between AIFs and GIFs of subjects, based on the particular case of the average impact factor of a subfield versus the impact factor of this subfield as a whole, the difference being studied between an average of quotients, denoted as AQ, and a global average, obtained as a quotient of averages, and denoted as GQ. In the case of impact factors, AQ becomes the average impact factor of a field, and GQ becomes its global impact factor. Discusses a number of applications of this technique in the context of informetrics and scientometrics
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  9. Rousseau, R.: Robert Fairthorne and the empirical power laws (2005) 0.01
    0.007259987 = product of:
      0.039929926 = sum of:
        0.021659635 = weight(_text_:of in 4398) [ClassicSimilarity], result of:
          0.021659635 = score(doc=4398,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.40111488 = fieldWeight in 4398, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4398)
        0.01827029 = weight(_text_:on in 4398) [ClassicSimilarity], result of:
          0.01827029 = score(doc=4398,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24056101 = fieldWeight in 4398, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4398)
      0.18181819 = coord(2/11)
    
    Abstract
    Purpose - Aims to review Fairthorne's classic article "Empirical hyperbolic distributions (Bradford-Zipf-Mandelbrot) for bibliometric description and prediction" (Journal of Documentation, Vol. 25, pp. 319-343, 1969), as part of a series marking the Journal of Documentation's 60th anniversary. Design/methodology/approach - Analysis of article content, qualitative evaluation of its subsequent impact, citation analysis, and diffusion analysis. Findings - The content, further developments and influence on the field of informetrics of this landmark paper are explained. Originality/value - A review is given of the contents of Fairthorne's original article and its influence on the field of informetrics. Its transdisciplinary reception is measured through a diffusion analysis.
    Source
    Journal of documentation. 61(2005) no.2, S.194-202
  10. Liu, Y.; Rousseau, R.: Interestingness and the essence of citation : Thomas Reid and bibliographic description (2013) 0.01
    0.006862766 = product of:
      0.03774521 = sum of:
        0.018565401 = weight(_text_:of in 1764) [ClassicSimilarity], result of:
          0.018565401 = score(doc=1764,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34381276 = fieldWeight in 1764, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1764)
        0.01917981 = weight(_text_:on in 1764) [ClassicSimilarity], result of:
          0.01917981 = score(doc=1764,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.25253648 = fieldWeight in 1764, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1764)
      0.18181819 = coord(2/11)
    
    Abstract
    Purpose - This paper aims to provide a new insight into the reasons why authors cite. Design/methodology/approach The authors argue that, based on philosophical ideas about the essence of things, pure rational thinking about the role of citations leads to the answer. Findings - Citations originate from the interestingness of the investigated phenomenon. The essence of citation lies in the interaction between different ideas or perspectives on a phenomenon addressed in the citing as well as in the cited articles. Research limitations/implications - The findings only apply to ethical (not whimsical or self-serving) citations. As such citations reflect interactions of scientific ideas, they can reveal the evolution of science, revive the cognitive process of an investigated scientific phenomenon and reveal political and economic factors influencing the development of science. Originality/value - This article is the first to propose interestingness and the interaction of ideas as the basic reason for citing. This view on citations allows reverse engineering from citations to ideas and hence becomes useful for science policy.
    Source
    Journal of documentation. 69(2013) no.4, S.580-589
  11. Rousseau, R.: On Egghe's construction of Lorenz curves (2007) 0.01
    0.006748129 = product of:
      0.03711471 = sum of:
        0.01865893 = weight(_text_:of in 521) [ClassicSimilarity], result of:
          0.01865893 = score(doc=521,freq=8.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34554482 = fieldWeight in 521, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=521)
        0.018455777 = weight(_text_:on in 521) [ClassicSimilarity], result of:
          0.018455777 = score(doc=521,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24300331 = fieldWeight in 521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=521)
      0.18181819 = coord(2/11)
    
    Abstract
    Contrary to Burrell's statements, Egghe's theory of continuous concentration does include the construction of a standard Lorenz curve.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.10, S.1551-1552
  12. Hu, X.; Rousseau, R.: Do citation chimeras exist? : The case of under-cited influential articles suffering delayed recognition (2019) 0.01
    0.006719455 = product of:
      0.036957003 = sum of:
        0.014810067 = weight(_text_:of in 5217) [ClassicSimilarity], result of:
          0.014810067 = score(doc=5217,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2742677 = fieldWeight in 5217, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5217)
        0.022146935 = weight(_text_:on in 5217) [ClassicSimilarity], result of:
          0.022146935 = score(doc=5217,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 5217, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5217)
      0.18181819 = coord(2/11)
    
    Abstract
    In this study we investigate if articles suffering delayed recognition can at the same time be under-cited influential articles. Theoretically these two types of articles are independent, in the sense that suffering delayed recognition depends on the number and time distribution of received citations, while being an under-cited influential article depends only partially on the number of received (first generation) citations, and much more on second and third citation generations. Among 49 articles suffering delayed recognition we found 13 that are also under-cited influential. Based on a thorough investigation of these special cases we found that so-called authoritative citers play an important role in uniting the two different document types into a special citation chimera. Our investigation contributes to the classification of publications.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.5, S.499-508
  13. Liu, Y.; Rousseau, R.: Citation analysis and the development of science : a case study using articles by some Nobel prize winners (2014) 0.01
    0.0065226895 = product of:
      0.03587479 = sum of:
        0.02111017 = weight(_text_:of in 1197) [ClassicSimilarity], result of:
          0.02111017 = score(doc=1197,freq=16.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.39093933 = fieldWeight in 1197, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1197)
        0.014764623 = weight(_text_:on in 1197) [ClassicSimilarity], result of:
          0.014764623 = score(doc=1197,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.19440265 = fieldWeight in 1197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=1197)
      0.18181819 = coord(2/11)
    
    Abstract
    Using citation data of articles written by some Nobel Prize winners in physics, we show that concave, convex, and straight curves represent different types of interactions between old ideas and new insights. These cases illustrate different diffusion characteristics of academic knowledge, depending on the nature of the knowledge in the new publications. This work adds to the study of the development of science and links this development to citation analysis.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.281-289
  14. Shi, D.; Rousseau, R.; Yang, L.; Li, J.: ¬A journal's impact factor is influenced by changes in publication delays of citing journals (2017) 0.01
    0.006365898 = product of:
      0.03501244 = sum of:
        0.015832627 = weight(_text_:of in 3441) [ClassicSimilarity], result of:
          0.015832627 = score(doc=3441,freq=16.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2932045 = fieldWeight in 3441, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3441)
        0.01917981 = weight(_text_:on in 3441) [ClassicSimilarity], result of:
          0.01917981 = score(doc=3441,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.25253648 = fieldWeight in 3441, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3441)
      0.18181819 = coord(2/11)
    
    Abstract
    In this article we describe another problem with journal impact factors by showing that one journal's impact factor is dependent on other journals' publication delays. The proposed theoretical model predicts a monotonically decreasing function of the impact factor as a function of publication delay, on condition that the citation curve of the journal is monotone increasing during the publication window used in the calculation of the journal impact factor; otherwise, this function has a reversed U shape. Our findings based on simulations are verified by examining three journals in the information sciences: the Journal of Informetrics, Scientometrics, and the Journal of the Association for Information Science and Technology.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.780-789
  15. Rousseau, R.: Journal evaluation : technical and practical issues (2002) 0.01
    0.006190838 = product of:
      0.034049608 = sum of:
        0.018066432 = weight(_text_:of in 816) [ClassicSimilarity], result of:
          0.018066432 = score(doc=816,freq=30.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.33457235 = fieldWeight in 816, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=816)
        0.015983174 = weight(_text_:on in 816) [ClassicSimilarity], result of:
          0.015983174 = score(doc=816,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 816, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=816)
      0.18181819 = coord(2/11)
    
    Abstract
    This essay provides an overview of journal evaluation indicators. It highlights the strengths and weaknesses of different indicators, together with their range of applicability. The definition of a "quality journal," different notions of impact factors, the meaning of ranking journals, and possible biases in citation databases are also discussed. Attention is given to using the journal impact in evaluation studies. The quality of a journal is a multifaceted notion. Journals can be evaluated for different purposes, and hence the results of such evaluation exercises can be quite different depending on the indicator(s) used. The impact factor, in one of its versions, is probably the most used indicator when it comes to gauging the visibility of a journal on the research front. Generalized impact factors, over periods longer than the traditional two years, are better indicators for the long-term value of a journal. As with all evaluation studies, care must be exercised when considering journal impact factors as a quality indicator. It seems best to use a whole battery of indicators (including several impact factors) and to change this group of indicators depending on the purpose of the evaluation study. Nowadays it goes without saying that special attention is paid to e-journals and specific indicators for this type of journal.
  16. Frandsen, T.F.; Rousseau, R.; Rowlands, I.: Diffusion factors (2006) 0.01
    0.006079456 = product of:
      0.033437006 = sum of:
        0.01745383 = weight(_text_:of in 5587) [ClassicSimilarity], result of:
          0.01745383 = score(doc=5587,freq=28.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.32322758 = fieldWeight in 5587, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
        0.015983174 = weight(_text_:on in 5587) [ClassicSimilarity], result of:
          0.015983174 = score(doc=5587,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 5587, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
      0.18181819 = coord(2/11)
    
    Abstract
    Purpose - The purpose of this paper is to clarify earlier work on journal diffusion metrics. Classical journal indicators such as the Garfield impact factor do not measure the breadth of influence across the literature of a particular journal title. As a new approach to measuring research influence, the study complements these existing metrics with a series of formally described diffusion factors. Design/methodology/approach - Using a publication-citation matrix as an organising construct, the paper develops formal descriptions of two forms of diffusion metric: "relative diffusion factors" and "journal diffusion factors" in both their synchronous and diachronous forms. It also provides worked examples for selected library and information science and economics journals, plus a sample of health information papers to illustrate their construction and use. Findings - Diffusion factors capture different aspects of the citation reception process than existing bibliometric measures. The paper shows that diffusion factors can be applied at the whole journal level or for sets of articles and that they provide a richer evidence base for citation analyses than traditional measures alone. Research limitations/implications - The focus of this paper is on clarifying the concepts underlying diffusion factors and there is unlimited scope for further work to apply these metrics to much larger and more comprehensive data sets than has been attempted here. Practical implications - These new tools extend the range of tools available for bibliometric, and possibly webometric, analysis. Diffusion factors might find particular application in studies where the research questions focus on the dynamic aspects of innovation and knowledge transfer. Originality/value - This paper will be of interest to those with theoretical interests in informetric distributions as well as those interested in science policy and innovation studies.
    Source
    Journal of documentation. 62(2006) no.1, S.58-72
  17. Egghe, L.; Rousseau, R.; Rousseau, S.: TOP-curves (2007) 0.01
    0.005911077 = product of:
      0.03251092 = sum of:
        0.019591875 = weight(_text_:of in 50) [ClassicSimilarity], result of:
          0.019591875 = score(doc=50,freq=18.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.36282203 = fieldWeight in 50, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=50)
        0.012919044 = weight(_text_:on in 50) [ClassicSimilarity], result of:
          0.012919044 = score(doc=50,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.17010231 = fieldWeight in 50, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=50)
      0.18181819 = coord(2/11)
    
    Abstract
    Several characteristics of classical Lorenz curves make them unsuitable for the study of a group of topperformers. TOP-curves, defined as a kind of mirror image of TIP-curves used in poverty studies, are shown to possess the properties necessary for adequate empirical ranking of various data arrays, based on the properties of the highest performers (i.e., the core). TOP-curves and essential TOP-curves, also introduced in this article, simultaneously represent the incidence, intensity, and inequality among the top. It is shown that TOPdominance partial order, introduced in this article, is stronger than Lorenz dominance order. In this way, this article contributes to the study of cores, a central issue in applied informetrics.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.6, S.777-785
  18. Zhang, L.; Rousseau, R.; Glänzel, W.: Diversity of references as an indicator of the interdisciplinarity of journals : taking similarity between subject fields into account (2016) 0.01
    0.005765298 = product of:
      0.03170914 = sum of:
        0.01865893 = weight(_text_:of in 2902) [ClassicSimilarity], result of:
          0.01865893 = score(doc=2902,freq=32.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34554482 = fieldWeight in 2902, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
        0.013050207 = weight(_text_:on in 2902) [ClassicSimilarity], result of:
          0.013050207 = score(doc=2902,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.1718293 = fieldWeight in 2902, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
      0.18181819 = coord(2/11)
    
    Abstract
    The objective of this article is to further the study of journal interdisciplinarity, or, more generally, knowledge integration at the level of individual articles. Interdisciplinarity is operationalized by the diversity of subject fields assigned to cited items in the article's reference list. Subject fields and subfields were obtained from the Leuven-Budapest (ECOOM) subject-classification scheme, while disciplinary diversity was measured taking variety, balance, and disparity into account. As diversity measure we use a Hill-type true diversity in the sense of Jost and Leinster-Cobbold. The analysis is conducted in 3 steps. In the first part, the properties of this measure are discussed, and, on the basis of these properties it is shown that the measure has the potential to serve as an indicator of interdisciplinarity. In the second part the applicability of this indicator is shown using selected journals from several research fields ranging from mathematics to social sciences. Finally, the often-heard argument, namely, that interdisciplinary research exhibits larger visibility and impact, is studied on the basis of these selected journals. Yet, as only 7 journals, representing a total of 15,757 articles, are studied, albeit chosen to cover a large range of interdisciplinarity, further research is still needed.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.5, S.1257-1265
  19. Kretschmer, H.; Rousseau, R.: Author inflation leads to a breakdown of Lotka's law : in and out of context (2001) 0.01
    0.0057259775 = product of:
      0.031492874 = sum of:
        0.015832627 = weight(_text_:of in 5205) [ClassicSimilarity], result of:
          0.015832627 = score(doc=5205,freq=16.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2932045 = fieldWeight in 5205, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=5205)
        0.015660247 = weight(_text_:on in 5205) [ClassicSimilarity], result of:
          0.015660247 = score(doc=5205,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.20619515 = fieldWeight in 5205, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5205)
      0.18181819 = coord(2/11)
    
    Abstract
    Fractional counting of authors of multi-authored papers has been shown to lead to a breakdown of Lotka's Law despite its robust character under most circumstances. Kretschmer and Rousseau use the normal count method of full credit for each author on two five-year bibliographies from each of 13 Dutch physics institutes where high co-authorship is a common occurrence. Kolmogorov-Smirnov tests were preformed to see if the Lotka distribution fit the data. All bibliographies up to 40 authors fit acceptably; no bibliography with a paper with over 100 authors fits the distribution. The underlying traditional "success breeds success" mechanism assumes new items on a one by one basis, but Egghe's generalized model would still account for the process. It seems unlikely that Lotka's Law will hold in a high co-authorship environment.
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.8, S.610-614
  20. Yan, S.; Rousseau, R.; Huang, S.: Contributions of chinese authors in PLOS ONE (2016) 0.01
    0.0054904465 = product of:
      0.030197455 = sum of:
        0.01727841 = weight(_text_:of in 2765) [ClassicSimilarity], result of:
          0.01727841 = score(doc=2765,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.31997898 = fieldWeight in 2765, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2765)
        0.012919044 = weight(_text_:on in 2765) [ClassicSimilarity], result of:
          0.012919044 = score(doc=2765,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.17010231 = fieldWeight in 2765, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2765)
      0.18181819 = coord(2/11)
    
    Abstract
    Beginning with a short review of Public Library of Science (PLOS) journals, we focus on PLOS ONE and more specifically the contributions of Chinese authors to this journal. It is shown that their contribution is growing exponentially. In 2013 almost one fifth of all publications in this journal had at least one Chinese author. The average number of citations per publication is approximately the same for articles with a Chinese author and for articles without any Chinese coauthor. Using the odds-ratio, we could not find arguments that Chinese authors in PLOS ONE excessively cite other Chinese contributions.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.543-549