Search (16 results, page 1 of 1)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.03
    0.025887702 = product of:
      0.1294385 = sum of:
        0.1294385 = sum of:
          0.08262127 = weight(_text_:history in 5083) [ClassicSimilarity], result of:
            0.08262127 = score(doc=5083,freq=2.0), product of:
              0.20093648 = queryWeight, product of:
                4.6519823 = idf(docFreq=1146, maxDocs=44218)
                0.04319373 = queryNorm
              0.41118103 = fieldWeight in 5083, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.6519823 = idf(docFreq=1146, maxDocs=44218)
                0.0625 = fieldNorm(doc=5083)
          0.046817232 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
            0.046817232 = score(doc=5083,freq=2.0), product of:
              0.15125708 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04319373 = queryNorm
              0.30952093 = fieldWeight in 5083, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5083)
      0.2 = coord(1/5)
    
    Abstract
    The concept of faceted classification has its long history and importance in the human civilization. Recently, more and more consumer Web sites adopt the idea of facet analysis to organize and display their products or services. The aim of this article is to review the origin and develpment of faceted classification, as well as its concepts, essence, advantage and limitation. Further, the applications of faceted classification in various domians have been explored.
    Date
    27. 5.2007 22:19:35
  2. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.01
    0.013191386 = product of:
      0.06595693 = sum of:
        0.06595693 = weight(_text_:computers in 2793) [ClassicSimilarity], result of:
          0.06595693 = score(doc=2793,freq=2.0), product of:
            0.22709264 = queryWeight, product of:
              5.257537 = idf(docFreq=625, maxDocs=44218)
              0.04319373 = queryNorm
            0.29044062 = fieldWeight in 2793, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.257537 = idf(docFreq=625, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
      0.2 = coord(1/5)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.
  3. Raghavan, K.S.: ¬The Colon Classification : a few considerations on its future (2015) 0.01
    0.008262127 = product of:
      0.041310634 = sum of:
        0.041310634 = product of:
          0.08262127 = sum of:
            0.08262127 = weight(_text_:history in 2760) [ClassicSimilarity], result of:
              0.08262127 = score(doc=2760,freq=2.0), product of:
                0.20093648 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.04319373 = queryNorm
                0.41118103 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    The article highlights the efforts and plans of Sarada Ranganathan Endowment for Library Science for revival of CC. Presents a brief history of the Scheme and explains is features. Discusses areas needing revamping for continual revision and existence of CC. Also seeks feedback from LIS professionals on the revision of the Scheme.
  4. Dahlberg, I.: Why a new universal classification system is needed (2017) 0.01
    0.007229361 = product of:
      0.036146805 = sum of:
        0.036146805 = product of:
          0.07229361 = sum of:
            0.07229361 = weight(_text_:history in 3614) [ClassicSimilarity], result of:
              0.07229361 = score(doc=3614,freq=2.0), product of:
                0.20093648 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.04319373 = queryNorm
                0.3597834 = fieldWeight in 3614, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3614)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Research history of the last 70 years highlights various systems for contents assessment and retrieval of scientific literature, such as universal classifications, thesauri, ontologies etc., which have followed developments of their own, notwithstanding a general trend towards interoperability, i.e. either to become instruments for cooperation or to widen their scope to encompass neighbouring fields within their framework. In the case of thesauri and ontologies, the endeavour to upgrade them into a universal system was bound to miscarry. This paper purports to indicate ways to gain from past experience and possibly rally material achievements while updating and promoting the ontologically-based faceted Information Coding Classification as a progressive universal system fit for meeting whatever requirements in the fields of information and science at large.
  5. Broughton, V.: Facet analysis : the evolution of an idea (2023) 0.01
    0.007229361 = product of:
      0.036146805 = sum of:
        0.036146805 = product of:
          0.07229361 = sum of:
            0.07229361 = weight(_text_:history in 1164) [ClassicSimilarity], result of:
              0.07229361 = score(doc=1164,freq=2.0), product of:
                0.20093648 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.04319373 = queryNorm
                0.3597834 = fieldWeight in 1164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1164)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Facets are widely encountered in information and knowledge organization, but there is much disparity in the use and understanding of concepts such as "facet," "facet analysis," and "faceted classification." The paper traces the history of these ideas and how they have been employed in different contexts. What may be termed the classical school of faceted classification is given some prominence, through the ideas of Ranganathan and the Classification Research Group, but other interpretations are also explored. Attention is paid not only to the idea of what facet analysis is, and what purpose it serves, but also the language utilized to describe and explain it.
  6. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.01
    0.0058521545 = product of:
      0.029260771 = sum of:
        0.029260771 = product of:
          0.058521543 = sum of:
            0.058521543 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.058521543 = score(doc=127,freq=2.0), product of:
                0.15125708 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04319373 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)
  7. Frické, M.: Logical division (2016) 0.01
    0.0051638293 = product of:
      0.025819147 = sum of:
        0.025819147 = product of:
          0.051638294 = sum of:
            0.051638294 = weight(_text_:history in 3183) [ClassicSimilarity], result of:
              0.051638294 = score(doc=3183,freq=2.0), product of:
                0.20093648 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.04319373 = queryNorm
                0.25698814 = fieldWeight in 3183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3183)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Content
    Contents: 1. Introduction: Kinds of Division; 2. The Basics of Logical Division; 3. History; 4. Formalization; 5. The Rules; 6. The Status of the Rules; 7. The Process of Logical Division; 8. Conclusion
  8. Dimensions of knowledge : facets for knowledge organization (2017) 0.01
    0.0051638293 = product of:
      0.025819147 = sum of:
        0.025819147 = product of:
          0.051638294 = sum of:
            0.051638294 = weight(_text_:history in 4154) [ClassicSimilarity], result of:
              0.051638294 = score(doc=4154,freq=2.0), product of:
                0.20093648 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.04319373 = queryNorm
                0.25698814 = fieldWeight in 4154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4154)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    The identification and contextual definition of concepts is the core of knowledge organization. The full expression of comprehension is accomplished through the use of an extension device called the facet. A facet is a category of dimensional characteristics that cross the hierarchical array of concepts to provide extension, or breadth, to the contexts in which they are discovered or expressed in knowledge organization systems. The use of the facet in knowledge organization has a rich history arising in the mid-nineteenth century. As it has matured through more than a century of application, the notion of the facet in knowledge organization has taken on a variety of meanings, from that of simple categories used in web search engines to the more sophisticated idea of intersecting dimensions of knowledge. This book describes the state of the art of the understanding of facets in knowledge organization today.
  9. Tennis, J.T.: Facets and fugit tempus : considering time's effect on faceted classification schemes (2012) 0.00
    0.004681723 = product of:
      0.023408616 = sum of:
        0.023408616 = product of:
          0.046817232 = sum of:
            0.046817232 = weight(_text_:22 in 826) [ClassicSimilarity], result of:
              0.046817232 = score(doc=826,freq=2.0), product of:
                0.15125708 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04319373 = queryNorm
                0.30952093 = fieldWeight in 826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=826)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    2. 6.2013 18:33:22
  10. Kaiser, J.O.: Systematic indexing (1985) 0.00
    0.0041310634 = product of:
      0.020655317 = sum of:
        0.020655317 = product of:
          0.041310634 = sum of:
            0.041310634 = weight(_text_:history in 571) [ClassicSimilarity], result of:
              0.041310634 = score(doc=571,freq=2.0), product of:
                0.20093648 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.04319373 = queryNorm
                0.20559052 = fieldWeight in 571, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.03125 = fieldNorm(doc=571)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    A native of Germany and a former teacher of languages and music, Julius Otto Kaiser (1868-1927) came to the Philadelphia Commercial Museum to be its librarian in 1896. Faced with the problem of making "information" accessible, he developed a method of indexing he called systematic indexing. The first draft of his scheme, published in 1896-97, was an important landmark in the history of subject analysis. R. K. Olding credits Kaiser with making the greatest single advance in indexing theory since Charles A. Cutter and John Metcalfe eulogizes him by observing that "in sheer capacity for really scientific and logical thinking, Kaiser's was probably the best mind that has ever applied itself to subject indexing." Kaiser was an admirer of "system." By systematic indexing he meant indicating information not with natural language expressions as, for instance, Cutter had advocated, but with artificial expressions constructed according to formulas. Kaiser grudged natural language its approximateness, its vagaries, and its ambiguities. The formulas he introduced were to provide a "machinery for regularising or standardising language" (paragraph 67). Kaiser recognized three categories or "facets" of index terms: (1) terms of concretes, representing things, real or imaginary (e.g., money, machines); (2) terms of processes, representing either conditions attaching to things or their actions (e.g., trade, manufacture); and (3) terms of localities, representing, for the most part, countries (e.g., France, South Africa). Expressions in Kaiser's index language were called statements. Statements consisted of sequences of terms, the syntax of which was prescribed by formula. These formulas specified sequences of terms by reference to category types. Only three citation orders were permitted: a term in the concrete category followed by one in the process category (e.g., Wool-Scouring); (2) a country term followed by a process term (e.g., Brazil - Education); and (3) a concrete term followed by a country term, followed by a process term (e.g., Nitrate-Chile-Trade). Kaiser's system was a precursor of two of the most significant developments in twentieth-century approaches to subject access-the special purpose use of language for indexing, thus the concept of index language, which was to emerge as a generative idea at the time of the second Cranfield experiment (1966) and the use of facets to categorize subject indicators, which was to become the characterizing feature of analytico-synthetic indexing methods such as the Colon classification. In addition to its visionary quality, Kaiser's work is notable for its meticulousness and honesty, as can be seen, for instance, in his observations about the difficulties in facet definition.
  11. Perugini, S.: Supporting multiple paths to objects in information hierarchies : faceted classification, faceted search, and symbolic links (2010) 0.00
    0.0040965076 = product of:
      0.020482538 = sum of:
        0.020482538 = product of:
          0.040965077 = sum of:
            0.040965077 = weight(_text_:22 in 4227) [ClassicSimilarity], result of:
              0.040965077 = score(doc=4227,freq=2.0), product of:
                0.15125708 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04319373 = queryNorm
                0.2708308 = fieldWeight in 4227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4227)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Information processing and management. 46(2010) no.1, S.22-43
  12. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.00
    0.0040965076 = product of:
      0.020482538 = sum of:
        0.020482538 = product of:
          0.040965077 = sum of:
            0.040965077 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.040965077 = score(doc=632,freq=2.0), product of:
                0.15125708 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04319373 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    22. 2.2013 11:31:25
  13. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.00
    0.0029260772 = product of:
      0.014630386 = sum of:
        0.014630386 = product of:
          0.029260771 = sum of:
            0.029260771 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.029260771 = score(doc=3739,freq=2.0), product of:
                0.15125708 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04319373 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  14. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.00
    0.0029260772 = product of:
      0.014630386 = sum of:
        0.014630386 = product of:
          0.029260771 = sum of:
            0.029260771 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.029260771 = score(doc=1417,freq=2.0), product of:
                0.15125708 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04319373 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  15. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.00
    0.0029260772 = product of:
      0.014630386 = sum of:
        0.014630386 = product of:
          0.029260771 = sum of:
            0.029260771 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.029260771 = score(doc=1418,freq=2.0), product of:
                0.15125708 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04319373 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  16. Facets: a fruitful notion in many domains : special issue on facet analysis (2008) 0.00
    0.0025819147 = product of:
      0.0129095735 = sum of:
        0.0129095735 = product of:
          0.025819147 = sum of:
            0.025819147 = weight(_text_:history in 3262) [ClassicSimilarity], result of:
              0.025819147 = score(doc=3262,freq=2.0), product of:
                0.20093648 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.04319373 = queryNorm
                0.12849407 = fieldWeight in 3262, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=3262)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Footnote
    Two of the papers revisit the interaction of facets with the theory of integrative levels, which posits that the organization of the natural world reflects increasingly interdependent complexity. This approach was tested as a basis for the creation of faceted classifications in the 1960s. These contemporary treatments of integrative levels are not discipline-driven as were the early approaches, but instead are ontological and phenomenological in focus. Dahlberg (p. 161-172) outlines the creation of the ICC (Information Coding System) and the application of the Systematifier in the generation of facets and the creation of a fully faceted classification. Gnoli (p. 177-192) proposes the use of fundamental categories as a way to redefine facets and fundamental categories in "more universal and level-independent ways" (p. 192). Given that Axiomathes has a stated focus on "contemporary issues in cognition and ontology" and the following thesis: "that real advances in contemporary science may depend upon a consideration of the origins and intellectual history of ideas at the forefront of current research," this venue seems well suited for the implementation of the stated agenda, to illustrate complementary approaches and to stimulate research. As situated, this special issue may well serve as a bridge to a more interdisciplinary dialogue about facet analysis than has previously been the case."