Search (23 results, page 1 of 2)

  • × theme_ss:"Begriffstheorie"
  1. ¬The semantics of relationships : an interdisciplinary perspective (2002) 0.03
    0.034183435 = product of:
      0.05127515 = sum of:
        0.028181016 = weight(_text_:data in 1430) [ClassicSimilarity], result of:
          0.028181016 = score(doc=1430,freq=2.0), product of:
            0.16132914 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.051020417 = queryNorm
            0.17468026 = fieldWeight in 1430, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1430)
        0.02309413 = product of:
          0.04618826 = sum of:
            0.04618826 = weight(_text_:processing in 1430) [ClassicSimilarity], result of:
              0.04618826 = score(doc=1430,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.22363065 = fieldWeight in 1430, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1430)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Work on relationships takes place in many communities, including, among others, data modeling, knowledge representation, natural language processing, linguistics, and information retrieval. Unfortunately, continued disciplinary splintering and specialization keeps any one person from being familiar with the full expanse of that work. By including contributions form experts in a variety of disciplines and backgrounds, this volume demonstrates both the parallels that inform work on relationships across a number of fields and the singular emphases that have yet to be fully embraced, The volume is organized into 3 parts: (1) Types of relationships (2) Relationships in knowledge representation and reasoning (3) Applications of relationships
  2. Jouis, C.: Logic of relationships (2002) 0.03
    0.026917025 = product of:
      0.08075108 = sum of:
        0.08075108 = sum of:
          0.04618826 = weight(_text_:processing in 1204) [ClassicSimilarity], result of:
            0.04618826 = score(doc=1204,freq=2.0), product of:
              0.20653816 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.051020417 = queryNorm
              0.22363065 = fieldWeight in 1204, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
          0.03456281 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
            0.03456281 = score(doc=1204,freq=2.0), product of:
              0.1786648 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051020417 = queryNorm
              0.19345059 = fieldWeight in 1204, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
      0.33333334 = coord(1/3)
    
    Abstract
    A main goal of recent studies in semantics is to integrate into conceptual structures the models of representation used in linguistics, logic, and/or artificial intelligence. A fundamental problem resides in the need to structure knowledge and then to check the validity of constructed representations. We propose associating logical properties with relationships by introducing the relationships into a typed and functional system of specifcations. This makes it possible to compare conceptual representations against the relationships established between the concepts. The mandatory condition to validate such a conceptual representation is consistency. The semantic system proposed is based an a structured set of semantic primitives-types, relations, and properties-based an a global model of language processing, Applicative and Cognitive Grammar (ACG) (Desc16s, 1990), and an extension of this model to terminology (Jouis & Mustafa 1995, 1996, 1997). The ACG postulates three levels of representation of languages, including a cognitive level. At this level, the meanings of lexical predicates are represented by semantic cognitive schemes. From this perspective, we propose a set of semantic concepts, which defines an organized system of meanings. Relations are part of a specification network based an a general terminological scheure (i.e., a coherent system of meanings of relations). In such a system, a specific relation may be characterized as to its: (1) functional type (the semantic type of arguments of the relation); (2) algebraic properties (reflexivity, symmetry, transitivity, etc.); and (3) combinatorial relations with other entities in the same context (for instance, the part of the text where a concept is defined).
    Date
    1.12.2002 11:12:22
  3. Eckes, T.: Knowledge structures and knowledge representation : psychological models of conceptual order (1990) 0.02
    0.022544812 = product of:
      0.06763443 = sum of:
        0.06763443 = weight(_text_:data in 861) [ClassicSimilarity], result of:
          0.06763443 = score(doc=861,freq=2.0), product of:
            0.16132914 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.051020417 = queryNorm
            0.4192326 = fieldWeight in 861, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.09375 = fieldNorm(doc=861)
      0.33333334 = coord(1/3)
    
    Source
    Conceptual and numerical analysis of data. Proc. of the 13th Conf. of the Gesellschaft für Klassifikation, Augsburg, 10.-12.4.1989. Ed.: O. Opitz
  4. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.02
    0.016129311 = product of:
      0.048387934 = sum of:
        0.048387934 = product of:
          0.09677587 = sum of:
            0.09677587 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.09677587 = score(doc=880,freq=2.0), product of:
                0.1786648 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051020417 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.9-22
  5. Wüster, E.: Begriffs- und Themaklassifikation : Unterschiede in ihrem Wesen und in ihrer Anwendung (1971) 0.01
    0.013825124 = product of:
      0.04147537 = sum of:
        0.04147537 = product of:
          0.08295074 = sum of:
            0.08295074 = weight(_text_:22 in 3904) [ClassicSimilarity], result of:
              0.08295074 = score(doc=3904,freq=2.0), product of:
                0.1786648 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051020417 = queryNorm
                0.46428138 = fieldWeight in 3904, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3904)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Nachrichten für Dokumentation. 22(1971) H.3, S.98-104 (T.1); H.4, S.143-150 (T.2)
  6. Thiel, C.: ¬Der klassische und der moderne Begriff des Begriffs : Gedanken zur Geschichte der Begriffsbildung in den exakten Wissenschaften (1994) 0.01
    0.013284659 = product of:
      0.039853975 = sum of:
        0.039853975 = weight(_text_:data in 7868) [ClassicSimilarity], result of:
          0.039853975 = score(doc=7868,freq=4.0), product of:
            0.16132914 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.051020417 = queryNorm
            0.24703519 = fieldWeight in 7868, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7868)
      0.33333334 = coord(1/3)
    
    Series
    Studies in classification, data analysis, and knowledge organization
    Source
    Information systems and data analysis: prospects - foundations - applications. Proc. of the 17th Annual Conference of the Gesellschaft für Klassifikation, Kaiserslautern, March 3-5, 1993. Ed.: H.-H. Bock et al
  7. Gemberling, T.: FRSAD, Semiotics, and FRBR-LRM (2016) 0.01
    0.013151141 = product of:
      0.03945342 = sum of:
        0.03945342 = weight(_text_:data in 5118) [ClassicSimilarity], result of:
          0.03945342 = score(doc=5118,freq=2.0), product of:
            0.16132914 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.051020417 = queryNorm
            0.24455236 = fieldWeight in 5118, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5118)
      0.33333334 = coord(1/3)
    
    Abstract
    Philosophy grapples with the deepest and most difficult questions in human life. In a 2012 article, Jonathan Furner raises questions about the "Functional Requirements for Subject Authority Data" (FRSAD) model. Can the FRSAD framers really avoid tackling philosophical questions as they attempt to do-the long-running dispute between nominalists and realists, in particular? This article attempts to flesh out a realist position while showing some implications for the new Functional Requirements for Bibliographic Records-Library Reference Model. It is not clear that FRSAD really takes a realist view, as Furner claims, and a position on the nominalist-realist debate is not necessary for information professionals.
  8. Conceptual structures : theory, tools and applications. 6th International Conference on Conceptual Structures, ICCS'98, Montpellier, France, August, 10-12, 1998, Proceedings (1998) 0.01
    0.0123168705 = product of:
      0.03695061 = sum of:
        0.03695061 = product of:
          0.07390122 = sum of:
            0.07390122 = weight(_text_:processing in 1378) [ClassicSimilarity], result of:
              0.07390122 = score(doc=1378,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.35780904 = fieldWeight in 1378, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1378)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This book constitutes the refereed proceedings of the 6th International Conference on Conceptual Structures, ICCS'98, held in Montpellier, France, in August 1998. The 20 revised full papers and 10 research reports presented were carefully selected from a total of 66 submissions; also included are three invited contributions. The volume is divided in topical sections on knowledge representation and knowledge engineering, tools, conceptual graphs and other models, relationships with logics, algorithms and complexity, natural language processing, and applications.
  9. Hetzler, B.: Visual analysis and exploration of relationships (2002) 0.01
    0.010777261 = product of:
      0.032331783 = sum of:
        0.032331783 = product of:
          0.06466357 = sum of:
            0.06466357 = weight(_text_:processing in 1189) [ClassicSimilarity], result of:
              0.06466357 = score(doc=1189,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.3130829 = fieldWeight in 1189, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1189)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Relationships can provide a rich and powerful set of information and can be used to accomplish application goals, such as information retrieval and natural language processing. A growing trend in the information science community is the use of information visualization-taking advantage of people's natural visual capabilities to perceive and understand complex information. This chapter explores how visualization and visual exploration can help users gain insight from known relationships and discover evidence of new relationships not previously anticipated.
  10. Conceptual structures : logical, linguistic, and computational issues. 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000 (2000) 0.01
    0.00976219 = product of:
      0.02928657 = sum of:
        0.02928657 = weight(_text_:data in 691) [ClassicSimilarity], result of:
          0.02928657 = score(doc=691,freq=6.0), product of:
            0.16132914 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.051020417 = queryNorm
            0.18153305 = fieldWeight in 691, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0234375 = fieldNorm(doc=691)
      0.33333334 = coord(1/3)
    
    Content
    Concepts and Language: The Role of Conceptual Structure in Human Evolution (Keith Devlin) - Concepts in Linguistics - Concepts in Natural Language (Gisela Harras) - Patterns, Schemata, and Types: Author Support through Formalized Experience (Felix H. Gatzemeier) - Conventions and Notations for Knowledge Representation and Retrieval (Philippe Martin) - Conceptual Ontology: Ontology, Metadata, and Semiotics (John F. Sowa) - Pragmatically Yours (Mary Keeler) - Conceptual Modeling for Distributed Ontology Environments (Deborah L. McGuinness) - Discovery of Class Relations in Exception Structured Knowledge Bases (Hendra Suryanto, Paul Compton) - Conceptual Graphs: Perspectives: CGs Applications: Where Are We 7 Years after the First ICCS ? (Michel Chein, David Genest) - The Engineering of a CC-Based System: Fundamental Issues (Guy W. Mineau) - Conceptual Graphs, Metamodeling, and Notation of Concepts (Olivier Gerbé, Guy W. Mineau, Rudolf K. Keller) - Knowledge Representation and Reasonings: Based on Graph Homomorphism (Marie-Laure Mugnier) - User Modeling Using Conceptual Graphs for Intelligent Agents (James F. Baldwin, Trevor P. Martin, Aimilia Tzanavari) - Towards a Unified Querying System of Both Structured and Semi-structured Imprecise Data Using Fuzzy View (Patrice Buche, Ollivier Haemmerlé) - Formal Semantics of Conceptual Structures: The Extensional Semantics of the Conceptual Graph Formalism (Guy W. Mineau) - Semantics of Attribute Relations in Conceptual Graphs (Pavel Kocura) - Nested Concept Graphs and Triadic Power Context Families (Susanne Prediger) - Negations in Simple Concept Graphs (Frithjof Dau) - Extending the CG Model by Simulations (Jean-François Baget) - Contextual Logic and Formal Concept Analysis: Building and Structuring Description Logic Knowledge Bases: Using Least Common Subsumers and Concept Analysis (Franz Baader, Ralf Molitor) - On the Contextual Logic of Ordinal Data (Silke Pollandt, Rudolf Wille) - Boolean Concept Logic (Rudolf Wille) - Lattices of Triadic Concept Graphs (Bernd Groh, Rudolf Wille) - Formalizing Hypotheses with Concepts (Bernhard Ganter, Sergei 0. Kuznetsov) - Generalized Formal Concept Analysis (Laurent Chaudron, Nicolas Maille) - A Logical Generalization of Formal Concept Analysis (Sébastien Ferré, Olivier Ridoux) - On the Treatment of Incomplete Knowledge in Formal Concept Analysis (Peter Burmeister, Richard Holzer) - Conceptual Structures in Practice: Logic-Based Networks: Concept Graphs and Conceptual Structures (Peter W. Eklund) - Conceptual Knowledge Discovery and Data Analysis (Joachim Hereth, Gerd Stumme, Rudolf Wille, Uta Wille) - CEM - A Conceptual Email Manager (Richard Cole, Gerd Stumme) - A Contextual-Logic Extension of TOSCANA (Peter Eklund, Bernd Groh, Gerd Stumme, Rudolf Wille) - A Conceptual Graph Model for W3C Resource Description Framework (Olivier Corby, Rose Dieng, Cédric Hébert) - Computational Aspects of Conceptual Structures: Computing with Conceptual Structures (Bernhard Ganter) - Symmetry and the Computation of Conceptual Structures (Robert Levinson) An Introduction to SNePS 3 (Stuart C. Shapiro) - Composition Norm Dynamics Calculation with Conceptual Graphs (Aldo de Moor) - From PROLOG++ to PROLOG+CG: A CG Object-Oriented Logic Programming Language (Adil Kabbaj, Martin Janta-Polczynski) - A Cost-Bounded Algorithm to Control Events Generalization (Gaël de Chalendar, Brigitte Grau, Olivier Ferret)
  11. Working with conceptual structures : contributions to ICCS 2000. 8th International Conference on Conceptual Structures: Logical, Linguistic, and Computational Issues. Darmstadt, August 14-18, 2000 (2000) 0.01
    0.009333383 = product of:
      0.028000148 = sum of:
        0.028000148 = product of:
          0.056000296 = sum of:
            0.056000296 = weight(_text_:processing in 5089) [ClassicSimilarity], result of:
              0.056000296 = score(doc=5089,freq=6.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.27113777 = fieldWeight in 5089, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5089)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The 8th International Conference on Conceptual Structures - Logical, Linguistic, and Computational Issues (ICCS 2000) brings together a wide range of researchers and practitioners working with conceptual structures. During the last few years, the ICCS conference series has considerably widened its scope on different kinds of conceptual structures, stimulating research across domain boundaries. We hope that this stimulation is further enhanced by ICCS 2000 joining the long tradition of conferences in Darmstadt with extensive, lively discussions. This volume consists of contributions presented at ICCS 2000, complementing the volume "Conceptual Structures: Logical, Linguistic, and Computational Issues" (B. Ganter, G.W. Mineau (Eds.), LNAI 1867, Springer, Berlin-Heidelberg 2000). It contains submissions reviewed by the program committee, and position papers. We wish to express our appreciation to all the authors of submitted papers, to the general chair, the program chair, the editorial board, the program committee, and to the additional reviewers for making ICCS 2000 a valuable contribution in the knowledge processing research field. Special thanks go to the local organizers for making the conference an enjoyable and inspiring event. We are grateful to Darmstadt University of Technology, the Ernst Schröder Center for Conceptual Knowledge Processing, the Center for Interdisciplinary Studies in Technology, the Deutsche Forschungsgemeinschaft, Land Hessen, and NaviCon GmbH for their generous support
    Content
    Concepts & Language: Knowledge organization by procedures of natural language processing. A case study using the method GABEK (J. Zelger, J. Gadner) - Computer aided narrative analysis using conceptual graphs (H. Schärfe, P. 0hrstrom) - Pragmatic representation of argumentative text: a challenge for the conceptual graph approach (H. Irandoust, B. Moulin) - Conceptual graphs as a knowledge representation core in a complex language learning environment (G. Angelova, A. Nenkova, S. Boycheva, T. Nikolov) - Conceptual Modeling and Ontologies: Relationships and actions in conceptual categories (Ch. Landauer, K.L. Bellman) - Concept approximations for formal concept analysis (J. Saquer, J.S. Deogun) - Faceted information representation (U. Priß) - Simple concept graphs with universal quantifiers (J. Tappe) - A framework for comparing methods for using or reusing multiple ontologies in an application (J. van ZyI, D. Corbett) - Designing task/method knowledge-based systems with conceptual graphs (M. Leclère, F.Trichet, Ch. Choquet) - A logical ontology (J. Farkas, J. Sarbo) - Algorithms and Tools: Fast concept analysis (Ch. Lindig) - A framework for conceptual graph unification (D. Corbett) - Visual CP representation of knowledge (H.D. Pfeiffer, R.T. Hartley) - Maximal isojoin for representing software textual specifications and detecting semantic anomalies (Th. Charnois) - Troika: using grids, lattices and graphs in knowledge acquisition (H.S. Delugach, B.E. Lampkin) - Open world theorem prover for conceptual graphs (J.E. Heaton, P. Kocura) - NetCare: a practical conceptual graphs software tool (S. Polovina, D. Strang) - CGWorld - a web based workbench for conceptual graphs management and applications (P. Dobrev, K. Toutanova) - Position papers: The edition project: Peirce's existential graphs (R. Mülller) - Mining association rules using formal concept analysis (N. Pasquier) - Contextual logic summary (R Wille) - Information channels and conceptual scaling (K.E. Wolff) - Spatial concepts - a rule exploration (S. Rudolph) - The TEXT-TO-ONTO learning environment (A. Mädche, St. Staab) - Controlling the semantics of metadata on audio-visual documents using ontologies (Th. Dechilly, B. Bachimont) - Building the ontological foundations of a terminology from natural language to conceptual graphs with Ribosome, a knowledge extraction system (Ch. Jacquelinet, A. Burgun) - CharGer: some lessons learned and new directions (H.S. Delugach) - Knowledge management using conceptual graphs (W.K. Pun)
  12. Khoo, C.; Myaeng, S.H.: Identifying semantic relations in text for information retrieval and information extraction (2002) 0.01
    0.009237653 = product of:
      0.027712956 = sum of:
        0.027712956 = product of:
          0.055425912 = sum of:
            0.055425912 = weight(_text_:processing in 1197) [ClassicSimilarity], result of:
              0.055425912 = score(doc=1197,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.26835677 = fieldWeight in 1197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1197)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Automatic identification of semantic relations in text is a difficult problem, but is important for many applications. It has been used for relation matching in information retrieval to retrieve documents that contain not only the concepts but also the relations between concepts specified in the user's query. It is an integral part of information extraction-extracting from natural language text, facts or pieces of information related to a particular event or topic. Other potential applications are in the construction of relational thesauri (semantic networks of related concepts) and other kinds of knowledge bases, and in natural language processing applications such as machine translation and computer comprehension of text. This chapter examines the main methods used for identifying semantic relations automatically and their application in information retrieval and information extraction.
  13. Pribbenow, S.: Meronymic relationships : from classical mereology to complex part-whole relations (2002) 0.01
    0.009237653 = product of:
      0.027712956 = sum of:
        0.027712956 = product of:
          0.055425912 = sum of:
            0.055425912 = weight(_text_:processing in 1202) [ClassicSimilarity], result of:
              0.055425912 = score(doc=1202,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.26835677 = fieldWeight in 1202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Meronymic or partonomic relations are ontological relations that are considered as fundamental as the ubiquitous, taxonomic subsumption relationship. While the latter is well-established and thoroughly investigated, there is still much work to be done in the field of meronymic relations. The aim of this chapter is to provide an overview an current research in characterizing, formalizing, classifying, and processing meronymic or partonomic relations (also called part-whole relations in artificial intelligence and application domains). The first part of the chapter investigates the role of knowledge about parts in human cognition, for example, visual perception and conceptual knowledge. The second part describes the classical approach provided by formal mereology and its extensions, which use one single transitive part-of relation, thus focusing an the notion of "part" and neglecting the notion of (something being a) "whole". This limitation leads to classifications of different part-whole relations, one of which is presented in the last part of the chapter.
  14. McCray, A.T.; Bodenreider, O.: ¬A conceptual framework for the biomedical domain (2002) 0.01
    0.009237653 = product of:
      0.027712956 = sum of:
        0.027712956 = product of:
          0.055425912 = sum of:
            0.055425912 = weight(_text_:processing in 1207) [ClassicSimilarity], result of:
              0.055425912 = score(doc=1207,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.26835677 = fieldWeight in 1207, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1207)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Specialized domains often come with an extensive terminology, suitable for storing and exchanging information, but not necessarily for knowledge processing. Knowledge structures such as semantic networks, or ontologies, are required to explore the semantics of a domain. The UMLS project at the National Library of Medicine is a research effort to develop knowledge-based resources for the biomedical domain. The Metathesaurus is a large body of knowledge that defines and inter-relates 730,000 biomedical concepts, and the Semantic Network defines the semantic principles that apply to this domain. This chapter presents these two knowledge sources and illustrates through a research study how they can collaborate to further structure the domain. The limits of the approach are discussed.
  15. Dahlberg, I.: Begriffsarbeit in der Wissensorganisation (2010) 0.01
    0.00921675 = product of:
      0.027650248 = sum of:
        0.027650248 = product of:
          0.055300497 = sum of:
            0.055300497 = weight(_text_:22 in 3726) [ClassicSimilarity], result of:
              0.055300497 = score(doc=3726,freq=2.0), product of:
                0.1786648 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051020417 = queryNorm
                0.30952093 = fieldWeight in 3726, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3726)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  16. Storms, G.; VanMechelen, I.; DeBoeck, P.: Structural-analysis of the intension and extension of semantic concepts (1994) 0.01
    0.008064656 = product of:
      0.024193967 = sum of:
        0.024193967 = product of:
          0.048387934 = sum of:
            0.048387934 = weight(_text_:22 in 2574) [ClassicSimilarity], result of:
              0.048387934 = score(doc=2574,freq=2.0), product of:
                0.1786648 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051020417 = queryNorm
                0.2708308 = fieldWeight in 2574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2574)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2000 19:17:40
  17. Bauer, G.: ¬Die vielseitigen Anwendungsmöglichkeiten des Kategorienprinzips bei der Wissensorganisation (2006) 0.01
    0.008064656 = product of:
      0.024193967 = sum of:
        0.024193967 = product of:
          0.048387934 = sum of:
            0.048387934 = weight(_text_:22 in 5710) [ClassicSimilarity], result of:
              0.048387934 = score(doc=5710,freq=2.0), product of:
                0.1786648 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051020417 = queryNorm
                0.2708308 = fieldWeight in 5710, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5710)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.22-33
  18. Barsalou, L.W.: Frames, concepts, and conceptual fields (1992) 0.01
    0.0076980437 = product of:
      0.02309413 = sum of:
        0.02309413 = product of:
          0.04618826 = sum of:
            0.04618826 = weight(_text_:processing in 3217) [ClassicSimilarity], result of:
              0.04618826 = score(doc=3217,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.22363065 = fieldWeight in 3217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3217)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this chapter I propose that frames provide the fundamental representation of knowledge in human cognition. In the first section, I raise problems with the feature list representations often found in theories of knowledge, and I sketch the solutions that frames provide to them. In the second section, I examine the three fundamental concepts of frames: attribute-value sets, structural invariants, and constraints. Because frames also represents the attributes, values, structural invariants, and constraints within a frame, the mechanism that constructs frames builds them recursively. The frame theory I propose borrows heavily from previous frame theories, although its collection of representational components is somewhat unique. Furthermore, frame theorists generally assume that frames are rigid configurations of independent attributes, whereas I propose that frames are dynamic relational structures whose form is flexible and context dependent. In the third section, I illustrate how frames support a wide variety of representational tasks central to conceptual processing in natural and artificial intelligence. Frames can represent exemplars and propositions, prototypes and membership, subordinates and taxonomies. Frames can also represent conceptual combinations, event sequences, rules, and plans. In the fourth section, I show how frames define the extent of conceptual fields and how they provide a powerful productive mechanism for generating specific concepts within a field.
  19. Thellefsen, M.M.; Thellefsen, T.; Sørensen, B.: Information as signs : a semiotic analysis of the information concept, determining its ontological and epistemological foundations (2018) 0.01
    0.0076980437 = product of:
      0.02309413 = sum of:
        0.02309413 = product of:
          0.04618826 = sum of:
            0.04618826 = weight(_text_:processing in 4241) [ClassicSimilarity], result of:
              0.04618826 = score(doc=4241,freq=2.0), product of:
                0.20653816 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.051020417 = queryNorm
                0.22363065 = fieldWeight in 4241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4241)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The purpose of this paper is to formulate an analytical framework for the information concept based on the semiotic theory. Design/methodology/approach The paper is motivated by the apparent controversy that still surrounds the information concept. Information, being a key concept within LIS, suffers from being anchored in various incompatible theories. The paper suggests that information is signs, and it demonstrates how the concept of information can be understood within C.S. Peirce's phenomenologically rooted semiotic. Hence, from there, certain ontological conditions as well epistemological consequences of the information concept can be deduced. Findings The paper argues that an understanding of information, as either objective or subjective/discursive, leads to either objective reductionism and signal processing, that fails to explain how information becomes meaningful at all, or conversely, information is understood only relative to subjective/discursive intentions, agendas, etc. To overcome the limitations of defining information as either objective or subjective/discursive, a semiotic analysis shows that information understood as signs is consistently sensitive to both objective and subjective/discursive features of information. It is consequently argued that information as concept should be defined in relation to ontological conditions having certain epistemological consequences. Originality/value The paper presents an analytical framework, derived from semiotics, that adds to the developments of the philosophical dimensions of information within LIS.
  20. Treude, L.: ¬Das Problem der Konzeptdefinition in der Wissensorganisation : über einen missglückten Versuch der Klärung (2013) 0.01
    0.006912562 = product of:
      0.020737685 = sum of:
        0.020737685 = product of:
          0.04147537 = sum of:
            0.04147537 = weight(_text_:22 in 3060) [ClassicSimilarity], result of:
              0.04147537 = score(doc=3060,freq=2.0), product of:
                0.1786648 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051020417 = queryNorm
                0.23214069 = fieldWeight in 3060, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3060)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    LIBREAS: Library ideas. no.22, 2013, S.xx-xx