Search (8 results, page 1 of 1)

  • × author_ss:"Gingras, Y."
  1. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.07
    0.07207237 = product of:
      0.14414474 = sum of:
        0.14414474 = sum of:
          0.08539981 = weight(_text_:journals in 2763) [ClassicSimilarity], result of:
            0.08539981 = score(doc=2763,freq=2.0), product of:
              0.25656942 = queryWeight, product of:
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.05109862 = queryNorm
              0.33285263 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.021064 = idf(docFreq=792, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
          0.05874494 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.05874494 = score(doc=2763,freq=4.0), product of:
              0.17893866 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05109862 = queryNorm
              0.32829654 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
      0.5 = coord(1/2)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
  2. Larivière, V.; Lozano, G.A.; Gingras, Y.: Are elite journals declining? (2014) 0.06
    0.056262065 = product of:
      0.11252413 = sum of:
        0.11252413 = product of:
          0.22504826 = sum of:
            0.22504826 = weight(_text_:journals in 1228) [ClassicSimilarity], result of:
              0.22504826 = score(doc=1228,freq=20.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.87714374 = fieldWeight in 1228, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1228)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Previous research indicates that during the past 20 years, the highest-quality work has been published in an increasingly diverse and larger group of journals. In this article, we examine whether this diversification has also affected the handful of elite journals that are traditionally considered to be the best. We examine citation patterns during the past 40 years of seven long-standing traditionally elite journals and six journals that have been increasing in importance during the past 20 years. To be among the top 5% or 1% cited papers, papers now need about twice as many citations as they did 40 years ago. Since the late 1980s and early 1990s, elite journals have been publishing a decreasing proportion of these top-cited papers. This also applies to the two journals that are typically considered as the top venues and often used as bibliometric indicators of "excellence": Science and Nature. On the other hand, several new and established journals are publishing an increasing proportion of the most-cited papers. These changes bring new challenges and opportunities for all parties. Journals can enact policies to increase or maintain their relative position in the journal hierarchy. Researchers now have the option to publish in more diverse venues knowing that their work can still reach the same audiences. Finally, evaluators and administrators need to know that although there will always be a certain prestige associated with publishing in "elite" journals, journal hierarchies are in constant flux.
  3. Lozano, G.A.; Larivière, V.; Gingras, Y.: ¬The weakening relationship between the impact factor and papers' citations in the digital age (2012) 0.04
    0.04358041 = product of:
      0.08716082 = sum of:
        0.08716082 = product of:
          0.17432164 = sum of:
            0.17432164 = weight(_text_:journals in 486) [ClassicSimilarity], result of:
              0.17432164 = score(doc=486,freq=12.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.67943263 = fieldWeight in 486, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=486)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Historically, papers have been physically bound to the journal in which they were published; but in the digital age papers are available individually, no longer tied to their respective journals. Hence, papers now can be read and cited based on their own merits, independently of the journal's physical availability, reputation, or impact factor (IF). We compare the strength of the relationship between journals' IFs and the actual citations received by their respective papers from 1902 to 2009. Throughout most of the 20th century, papers' citation rates were increasingly linked to their respective journals' IFs. However, since 1990, the advent of the digital age, the relation between IFs and paper citations has been weakening. This began first in physics, a field that was quick to make the transition into the electronic domain. Furthermore, since 1990 the overall proportion of highly cited papers coming from highly cited journals has been decreasing and, of these highly cited papers, the proportion not coming from highly cited journals has been increasing. Should this pattern continue, it might bring an end to the use of the IF as a way to evaluate the quality of journals, papers, and researchers.
  4. Larivière, V.; Gingras, Y.: ¬The impact factor's Matthew Effect : a natural experiment in bibliometrics (2010) 0.04
    0.042699903 = product of:
      0.08539981 = sum of:
        0.08539981 = product of:
          0.17079961 = sum of:
            0.17079961 = weight(_text_:journals in 3338) [ClassicSimilarity], result of:
              0.17079961 = score(doc=3338,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.66570526 = fieldWeight in 3338, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3338)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Since the publication of Robert K. Merton's theory of cumulative advantage in science (Matthew Effect), several empirical studies have tried to measure its presence at the level of papers, individual researchers, institutions, or countries. However, these studies seldom control for the intrinsic quality of papers or of researchers - better (however defined) papers or researchers could receive higher citation rates because they are indeed of better quality. Using an original method for controlling the intrinsic value of papers - identical duplicate papers published in different journals with different impact factors - this paper shows that the journal in which papers are published have a strong influence on their citation rates, as duplicate papers published in high-impact journals obtain, on average, twice as many citations as their identical counterparts published in journals with lower impact factors. The intrinsic value of a paper is thus not the only reason a given paper gets cited or not, there is a specific Matthew Effect attached to journals and this gives to papers published there an added value over and above their intrinsic quality.
  5. Kirchik, O.; Gingras, Y.; Larivière, V.: Changes in publication languages and citation practices and their effect on the scientific impact of Russian science (1993-2010) (2012) 0.04
    0.039783288 = product of:
      0.079566576 = sum of:
        0.079566576 = product of:
          0.15913315 = sum of:
            0.15913315 = weight(_text_:journals in 284) [ClassicSimilarity], result of:
              0.15913315 = score(doc=284,freq=10.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.6202343 = fieldWeight in 284, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=284)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article analyzes the effects of publication language on the international scientific visibility of Russia using the Web of Science (WoS). Like other developing and transition countries, it is subject to a growing pressure to "internationalize" its scientific activities, which primarily means a shift to English as a language of scientific communication. But to what extent does the transition to English improve the impact of research? The case of Russia is of interest in this respect as the existence of many combinations of national journals and languages of publications (namely, Russian and English, including translated journals) provide a kind of natural I experiment to test the effects of language and publisher's country on the international visibility of research through citations as well as on the referencing practices of authors. Our analysis points to the conclusion that the production of original English-language papers in foreign journals is a more efficient strategy of internationalization than the mere translation of domestic journals. If the objective of a country is to maximize the international visibility of its scientific work, then the efforts should go into the promotion of publication in reputed English-language journals to profit from the added effect provided by the Matthew effect of these venues.
  6. Bertin, M.; Atanassova, I.; Gingras, Y.; Larivière, V.: ¬The invariant distribution of references in scientific articles (2016) 0.03
    0.030193392 = product of:
      0.060386784 = sum of:
        0.060386784 = product of:
          0.12077357 = sum of:
            0.12077357 = weight(_text_:journals in 2497) [ClassicSimilarity], result of:
              0.12077357 = score(doc=2497,freq=4.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.47072473 = fieldWeight in 2497, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2497)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The organization of scientific papers typically follows a standardized pattern, the well-known IMRaD structure (introduction, methods, results, and discussion). Using the full text of 45,000 papers published in the PLoS series of journals as a case study, this paper investigates, from the viewpoint of bibliometrics, how references are distributed along the structure of scientific papers as well as the age of these cited references. Once the sections of articles are realigned to follow the IMRaD sequence, the position of cited references along the text of articles is invariant across all PLoS journals, with the introduction and discussion accounting for most of the references. It also provides evidence that the age of cited references varies by section, with older references being found in the methods and more recent references in the discussion. These results provide insight into the different roles citations have in the scholarly communication process.
  7. Larivière, V.; Gingras, Y.: On the prevalence and scientific impact of duplicate publications in different scientific fields (1980-2007) (2010) 0.03
    0.025161162 = product of:
      0.050322324 = sum of:
        0.050322324 = product of:
          0.10064465 = sum of:
            0.10064465 = weight(_text_:journals in 3622) [ClassicSimilarity], result of:
              0.10064465 = score(doc=3622,freq=4.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.39227062 = fieldWeight in 3622, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3622)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The issue of duplicate publications has received a lot of attention in the medical literature, but much less in the information science community. This paper aims to analyze the prevalence and scientific impact of duplicate publications across all fields of research between 1980 and 2007. Design/methodology/approach - The approach is a bibliometric analysis of duplicate papers based on their metadata. Duplicate papers are defined as papers published in two different journals having: the exact same title; the same first author; and the same number of cited references. Findings - In all fields combined, the prevalence of duplicates is one out of 2,000 papers, but is higher in the natural and medical sciences than in the social sciences and humanities. A very high proportion (>85 percent) of these papers are published the same year or one year apart, which suggest that most duplicate papers were submitted simultaneously. Furthermore, duplicate papers are generally published in journals with impact factors below the average of their field and obtain lower citations. Originality/value - The paper provides clear evidence that the prevalence of duplicate papers is low and, more importantly, that the scientific impact of such papers is below average.
  8. Larivière, V.; Gingras, Y.: On the relationship between interdisciplinarity and scientific impact (2009) 0.02
    0.017791625 = product of:
      0.03558325 = sum of:
        0.03558325 = product of:
          0.0711665 = sum of:
            0.0711665 = weight(_text_:journals in 3316) [ClassicSimilarity], result of:
              0.0711665 = score(doc=3316,freq=2.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.2773772 = fieldWeight in 3316, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3316)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article analyzes the effect of interdisciplinarity on the scientific impact of individual articles. Using all the articles published in Web of Science in 2000, we define the degree of interdisciplinarity of a given article as the percentage of its cited references made to journals of other disciplines. We show that although for all disciplines combined there is no clear correlation between the level of interdisciplinarity of articles and their citation rates, there are nonetheless some disciplines in which a higher level of interdisciplinarity is related to a higher citation rates. For other disciplines, citations decline as interdisciplinarity grows. One characteristic is visible in all disciplines: Highly disciplinary and highly interdisciplinary articles have a low scientific impact. This suggests that there might be an optimum of interdisciplinarity beyond which the research is too dispersed to find its niche and under which it is too mainstream to have high impact. Finally, the relationship between interdisciplinarity and scientific impact is highly determined by the citation characteristics of the disciplines involved: Articles citing citation-intensive disciplines are more likely to be cited by those disciplines and, hence, obtain higher citation scores than would articles citing non-citation-intensive disciplines.