Search (16 results, page 1 of 1)

  • × author_ss:"Rousseau, R."
  1. Impe, S. van; Rousseau, R.: Web-to-print citations and the humanities (2006) 0.04
    0.036979202 = product of:
      0.073958404 = sum of:
        0.073958404 = product of:
          0.14791681 = sum of:
            0.14791681 = weight(_text_:journals in 82) [ClassicSimilarity], result of:
              0.14791681 = score(doc=82,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5765177 = fieldWeight in 82, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    References to printed documents made on the web are called web-to-print references. These printed documents then in turn receive web-to-print citations. Webto-print citations and web-to-print references are the topic of this article, in which we study the online impact of printed sources. Web-to-print citations are discussed from a structural point of view and a small-scale experiment related to web-to-print citations for local history journals is performed. The main research question in setting up this experiment concerns the possibility of using web-to-print citations as a substitute for classical citation indexes by gauging the importance, visibility and impact of journals in the humanities. Results show the importance of web bibliographies in the field, but, at least for what concerns the journals and the period studied here, the amount of received web-to-print citations is too small to draw general conclusions.
  2. Shi, D.; Rousseau, R.; Yang, L.; Li, J.: ¬A journal's impact factor is influenced by changes in publication delays of citing journals (2017) 0.04
    0.036979202 = product of:
      0.073958404 = sum of:
        0.073958404 = product of:
          0.14791681 = sum of:
            0.14791681 = weight(_text_:journals in 3441) [ClassicSimilarity], result of:
              0.14791681 = score(doc=3441,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5765177 = fieldWeight in 3441, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3441)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article we describe another problem with journal impact factors by showing that one journal's impact factor is dependent on other journals' publication delays. The proposed theoretical model predicts a monotonically decreasing function of the impact factor as a function of publication delay, on condition that the citation curve of the journal is monotone increasing during the publication window used in the calculation of the journal impact factor; otherwise, this function has a reversed U shape. Our findings based on simulations are verified by examining three journals in the information sciences: the Journal of Informetrics, Scientometrics, and the Journal of the Association for Information Science and Technology.
  3. Zhang, L.; Rousseau, R.; Glänzel, W.: Diversity of references as an indicator of the interdisciplinarity of journals : taking similarity between subject fields into account (2016) 0.04
    0.03558325 = product of:
      0.0711665 = sum of:
        0.0711665 = product of:
          0.142333 = sum of:
            0.142333 = weight(_text_:journals in 2902) [ClassicSimilarity], result of:
              0.142333 = score(doc=2902,freq=8.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.5547544 = fieldWeight in 2902, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2902)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The objective of this article is to further the study of journal interdisciplinarity, or, more generally, knowledge integration at the level of individual articles. Interdisciplinarity is operationalized by the diversity of subject fields assigned to cited items in the article's reference list. Subject fields and subfields were obtained from the Leuven-Budapest (ECOOM) subject-classification scheme, while disciplinary diversity was measured taking variety, balance, and disparity into account. As diversity measure we use a Hill-type true diversity in the sense of Jost and Leinster-Cobbold. The analysis is conducted in 3 steps. In the first part, the properties of this measure are discussed, and, on the basis of these properties it is shown that the measure has the potential to serve as an indicator of interdisciplinarity. In the second part the applicability of this indicator is shown using selected journals from several research fields ranging from mathematics to social sciences. Finally, the often-heard argument, namely, that interdisciplinary research exhibits larger visibility and impact, is studied on the basis of these selected journals. Yet, as only 7 journals, representing a total of 15,757 articles, are studied, albeit chosen to cover a large range of interdisciplinarity, further research is still needed.
  4. Rousseau, R.; Ding, J.: Does international collaboration yield a higher citation potential for US scientists publishing in highly visible interdisciplinary Journals? (2016) 0.04
    0.035225622 = product of:
      0.070451245 = sum of:
        0.070451245 = product of:
          0.14090249 = sum of:
            0.14090249 = weight(_text_:journals in 2860) [ClassicSimilarity], result of:
              0.14090249 = score(doc=2860,freq=4.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.54917884 = fieldWeight in 2860, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2860)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Generally, multicountry papers receive more citations than single-country ones. In this contribution, we examine if this rule also applies to American scientists publishing in highly visible interdisciplinary journals. Concretely, we compare the citations received by American scientists in Nature, Science, and the Proceedings of the National Academy of Sciences of the United States of America (PNAS). It is shown that, statistically, American scientists publishing in Nature and Science do not benefit from international collaboration. This statement also holds for communicated submissions, but not for direct and for contributed submissions, to PNAS.
  5. Rousseau, R.: Journal evaluation : technical and practical issues (2002) 0.03
    0.030816004 = product of:
      0.061632007 = sum of:
        0.061632007 = product of:
          0.123264015 = sum of:
            0.123264015 = weight(_text_:journals in 816) [ClassicSimilarity], result of:
              0.123264015 = score(doc=816,freq=6.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.48043144 = fieldWeight in 816, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=816)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This essay provides an overview of journal evaluation indicators. It highlights the strengths and weaknesses of different indicators, together with their range of applicability. The definition of a "quality journal," different notions of impact factors, the meaning of ranking journals, and possible biases in citation databases are also discussed. Attention is given to using the journal impact in evaluation studies. The quality of a journal is a multifaceted notion. Journals can be evaluated for different purposes, and hence the results of such evaluation exercises can be quite different depending on the indicator(s) used. The impact factor, in one of its versions, is probably the most used indicator when it comes to gauging the visibility of a journal on the research front. Generalized impact factors, over periods longer than the traditional two years, are better indicators for the long-term value of a journal. As with all evaluation studies, care must be exercised when considering journal impact factors as a quality indicator. It seems best to use a whole battery of indicators (including several impact factors) and to change this group of indicators depending on the purpose of the evaluation study. Nowadays it goes without saying that special attention is paid to e-journals and specific indicators for this type of journal.
  6. Liang, L.; Rousseau, R.: Yield sequences as journal attractivity indicators : "payback times" for Science and Nature (2008) 0.03
    0.030193392 = product of:
      0.060386784 = sum of:
        0.060386784 = product of:
          0.12077357 = sum of:
            0.12077357 = weight(_text_:journals in 1737) [ClassicSimilarity], result of:
              0.12077357 = score(doc=1737,freq=4.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.47072473 = fieldWeight in 1737, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The yield period of a journal is defined as the time needed to accumulate the same number of citations as the number of references included during the period of study. Yield sequences are proposed as journal attractivity indicators describing dynamic characteristics of a journal. This paper aims to investigate their use. Design/methodology/approach - As a case study the yield sequences of the journals Nature and Science from 1955 onward are determined. Similarities and dissimilarities between these sequences are discussed and factors affecting yield periods are determined. Findings - The study finds that yield sequences make dynamic aspects of a journal visible, as reflected through citations. Exceptional circumstances (here the publication of Laemmli's paper in 1970 in the journal Nature) become clearly visible. The average number of references per article, the citation distribution and the size of the database used to collect citations are factors influencing yield sequences. Originality/value - A new dynamic indicator for the study of journals is introduced.
  7. Yang, B.; Rousseau, R.; Wang, X.; Huang, S.: How important is scientific software in bioinformatics research? : a comparative study between international and Chinese research communities (2018) 0.03
    0.025161162 = product of:
      0.050322324 = sum of:
        0.050322324 = product of:
          0.10064465 = sum of:
            0.10064465 = weight(_text_:journals in 4461) [ClassicSimilarity], result of:
              0.10064465 = score(doc=4461,freq=4.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.39227062 = fieldWeight in 4461, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4461)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Software programs are among the most important tools in data-driven research. The popularity of well-known packages and corresponding large numbers of citations received bear testimony of the contribution of scientific software to academic research. Yet software is not generally recognized as an academic outcome. In this study, a usage-based model is proposed with varied indicators including citations, mentions, and downloads to measure the importance of scientific software. We performed an investigation on a sample of international bioinformatics research articles, and on a sample from the Chinese community. Our analysis shows that scientists in the field of bioinformatics rely heavily on scientific software: the major differences between the international community and the Chinese example being how scientific packages are mentioned in publications and the time gap between the introduction of a package and its use. Biologists publishing in international journals tend to apply the latest tools earlier; Chinese scientists publishing in Chinese tend to follow later. Further, journals with higher impact factors tend to publish articles applying the latest tools earlier.
  8. Yan, S.; Rousseau, R.; Huang, S.: Contributions of chinese authors in PLOS ONE (2016) 0.02
    0.024908276 = product of:
      0.049816553 = sum of:
        0.049816553 = product of:
          0.099633105 = sum of:
            0.099633105 = weight(_text_:journals in 2765) [ClassicSimilarity], result of:
              0.099633105 = score(doc=2765,freq=2.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.38832808 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2765)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Beginning with a short review of Public Library of Science (PLOS) journals, we focus on PLOS ONE and more specifically the contributions of Chinese authors to this journal. It is shown that their contribution is growing exponentially. In 2013 almost one fifth of all publications in this journal had at least one Chinese author. The average number of citations per publication is approximately the same for articles with a Chinese author and for articles without any Chinese coauthor. Using the odds-ratio, we could not find arguments that Chinese authors in PLOS ONE excessively cite other Chinese contributions.
  9. Frandsen, T.F.; Rousseau, R.: Article impact calculated over arbitrary periods (2005) 0.02
    0.021349952 = product of:
      0.042699903 = sum of:
        0.042699903 = product of:
          0.08539981 = sum of:
            0.08539981 = weight(_text_:journals in 3264) [ClassicSimilarity], result of:
              0.08539981 = score(doc=3264,freq=2.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.33285263 = fieldWeight in 3264, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3264)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this paper we address the various formulations of impact of articles, usually groups of articles as gauged by citations that these articles receive over a certain period of time. The journal impact factor, as published by ISI (Philadelphia, PA), is the best-known example of a formulation of impact of journals (considered as a set of articles) but many others have been defined in the literature. Impact factors have varying publication and citation periods and the chosen length of these periods enables, e.g., a distinction between synchronous and diachronous impact factors. It is shown how an impact factor for the general case can be defined. Two alternatives for a general impact factor are proposed, depending an whether different publication years are seen as a whole, and hence treating each one of them differently, or by operating with citation periods of identical length but allowing each publication period different starting points.
  10. Colebunders, R.; Kenyon, C.; Rousseau, R.: Increase in numbers and proportions of review articles in Tropical Medicine, Infectious Diseases, and oncology (2014) 0.02
    0.021349952 = product of:
      0.042699903 = sum of:
        0.042699903 = product of:
          0.08539981 = sum of:
            0.08539981 = weight(_text_:journals in 1189) [ClassicSimilarity], result of:
              0.08539981 = score(doc=1189,freq=2.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.33285263 = fieldWeight in 1189, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1189)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article examines whether the absolute and relative numbers of reviews are increasing in the following three subfields of medical sciences: Tropical Medicine, Infectious Diseases, and Oncology. It further examines if reviews are cited more frequently than are "normal" articles. All research questions are answered affirmatively: The absolute as well as the relative numbers of reviews in these three subfields are indeed increasing. In addition, reviews in these fields are cited more frequently than are normal articles: about 70% more often than are "normal" articles in Infectious Diseases and Oncology and about 50% more often in Tropical Medicine. The article discusses possible reasons for this increase and concludes that medical journals should strive to achieve an optimal balance between review papers and original articles.
  11. Frandsen, T.F.; Rousseau, R.; Rowlands, I.: Diffusion factors (2006) 0.02
    0.017791625 = product of:
      0.03558325 = sum of:
        0.03558325 = product of:
          0.0711665 = sum of:
            0.0711665 = weight(_text_:journals in 5587) [ClassicSimilarity], result of:
              0.0711665 = score(doc=5587,freq=2.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.2773772 = fieldWeight in 5587, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5587)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to clarify earlier work on journal diffusion metrics. Classical journal indicators such as the Garfield impact factor do not measure the breadth of influence across the literature of a particular journal title. As a new approach to measuring research influence, the study complements these existing metrics with a series of formally described diffusion factors. Design/methodology/approach - Using a publication-citation matrix as an organising construct, the paper develops formal descriptions of two forms of diffusion metric: "relative diffusion factors" and "journal diffusion factors" in both their synchronous and diachronous forms. It also provides worked examples for selected library and information science and economics journals, plus a sample of health information papers to illustrate their construction and use. Findings - Diffusion factors capture different aspects of the citation reception process than existing bibliometric measures. The paper shows that diffusion factors can be applied at the whole journal level or for sets of articles and that they provide a richer evidence base for citation analyses than traditional measures alone. Research limitations/implications - The focus of this paper is on clarifying the concepts underlying diffusion factors and there is unlimited scope for further work to apply these metrics to much larger and more comprehensive data sets than has been attempted here. Practical implications - These new tools extend the range of tools available for bibliometric, and possibly webometric, analysis. Diffusion factors might find particular application in studies where the research questions focus on the dynamic aspects of innovation and knowledge transfer. Originality/value - This paper will be of interest to those with theoretical interests in informetric distributions as well as those interested in science policy and innovation studies.
  12. Rousseau, R.; Egghe, L.; Guns, R.: Becoming metric-wise : a bibliometric guide for researchers (2018) 0.02
    0.017791625 = product of:
      0.03558325 = sum of:
        0.03558325 = product of:
          0.0711665 = sum of:
            0.0711665 = weight(_text_:journals in 5226) [ClassicSimilarity], result of:
              0.0711665 = score(doc=5226,freq=2.0), product of:
                0.25656942 = queryWeight, product of:
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.05109862 = queryNorm
                0.2773772 = fieldWeight in 5226, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.021064 = idf(docFreq=792, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5226)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aims to inform researchers about metrics so that they become aware of the evaluative techniques being applied to their scientific output. Understanding these concepts will help them during their funding initiatives, and in hiring and tenure. The book not only describes what indicators do (or are designed to do, which is not always the same thing), but also gives precise mathematical formulae so that indicators can be properly understood and evaluated. Metrics have become a critical issue in science, with widespread international discussion taking place on the subject across scientific journals and organizations. As researchers should know the publication-citation context, the mathematical formulae of indicators being used by evaluating committees and their consequences, and how such indicators might be misused, this book provides an ideal tome on the topic. Provides researchers with a detailed understanding of bibliometric indicators and their applications. Empowers researchers looking to understand the indicators relevant to their work and careers. Presents an informed and rounded picture of bibliometrics, including the strengths and shortcomings of particular indicators. Supplies the mathematics behind bibliometric indicators so they can be properly understood. Written by authors with longstanding expertise who are considered global leaders in the field of bibliometrics
  13. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.02
    0.017307894 = product of:
      0.03461579 = sum of:
        0.03461579 = product of:
          0.06923158 = sum of:
            0.06923158 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
              0.06923158 = score(doc=4992,freq=2.0), product of:
                0.17893866 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05109862 = queryNorm
                0.38690117 = fieldWeight in 4992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    14. 2.2012 12:53:22
  14. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.01
    0.010384736 = product of:
      0.020769471 = sum of:
        0.020769471 = product of:
          0.041538943 = sum of:
            0.041538943 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.041538943 = score(doc=7659,freq=2.0), product of:
                0.17893866 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05109862 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  15. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.01
    0.010384736 = product of:
      0.020769471 = sum of:
        0.020769471 = product of:
          0.041538943 = sum of:
            0.041538943 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
              0.041538943 = score(doc=5270,freq=2.0), product of:
                0.17893866 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05109862 = queryNorm
                0.23214069 = fieldWeight in 5270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 15:26:24
  16. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.01
    0.0069231573 = product of:
      0.0138463145 = sum of:
        0.0138463145 = product of:
          0.027692629 = sum of:
            0.027692629 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.027692629 = score(doc=5171,freq=2.0), product of:
                0.17893866 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05109862 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    9. 7.2006 10:22:35