Search (41 results, page 1 of 3)

  • × author_ss:"Ding, Y."
  1. Klein, M.; Ding, Y.; Fensel, D.; Omelayenko, B.: Ontology management : storing, aligning and maintaining ontologies (2004) 0.03
    0.033457994 = product of:
      0.07806865 = sum of:
        0.033484332 = weight(_text_:systems in 4402) [ClassicSimilarity], result of:
          0.033484332 = score(doc=4402,freq=8.0), product of:
            0.12327058 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.04011181 = queryNorm
            0.2716328 = fieldWeight in 4402, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=4402)
        0.027404917 = weight(_text_:library in 4402) [ClassicSimilarity], result of:
          0.027404917 = score(doc=4402,freq=10.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.25983828 = fieldWeight in 4402, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=4402)
        0.017179398 = product of:
          0.034358796 = sum of:
            0.034358796 = weight(_text_:applications in 4402) [ClassicSimilarity], result of:
              0.034358796 = score(doc=4402,freq=2.0), product of:
                0.17659263 = queryWeight, product of:
                  4.4025097 = idf(docFreq=1471, maxDocs=44218)
                  0.04011181 = queryNorm
                0.19456528 = fieldWeight in 4402, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4025097 = idf(docFreq=1471, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4402)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Abstract
    Support for evolving ontologies is required in almost all situations where ontologies are used in real-world applications. In those cases, ontologies are often developed by several persons and will continue to evolve over time, because of changes in the real world, adaptations to different tasks, or alignments to other ontologies. To prevent that such changes will invalidate existing usage, a change management methodology is needed. This involves advanced versioning methods for the development and the maintenance of ontologies, but also configuration management, that takes care of the identification, relations and interpretation of ontology versions. All these aspects come together in integrated ontology library systems. When the number of different ontologies is increasing, the task of storing, maintaining and re-organizing them to secure the successful re-use of ontologies is challenging. Ontology library systems can help in the grouping and reorganizing ontologies for further re-use, integration, maintenance, mapping and versioning. Basically, a library system offers various functions for managing, adapting and standardizing groups of ontologies. Such integrated systems are a requirement for the Semantic Web to grow further and scale up. In this chapter, we describe a number of results with respect to the above mentioned areas. We start with a description of the alignment task and show a meta-ontology that is developed to specify the mappings. Then, we discuss the problems that are caused by evolving ontologies and describe two important elements of a change management methodology. Finally, in Section 4.4 we survey existing library systems and formulate a wish-list of features of an ontology library system.
  2. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.03
    0.026677381 = product of:
      0.09337083 = sum of:
        0.009225064 = product of:
          0.018450128 = sum of:
            0.018450128 = weight(_text_:science in 1521) [ClassicSimilarity], result of:
              0.018450128 = score(doc=1521,freq=2.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.17461908 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
        0.08414577 = sum of:
          0.05153819 = weight(_text_:applications in 1521) [ClassicSimilarity], result of:
            0.05153819 = score(doc=1521,freq=2.0), product of:
              0.17659263 = queryWeight, product of:
                4.4025097 = idf(docFreq=1471, maxDocs=44218)
                0.04011181 = queryNorm
              0.2918479 = fieldWeight in 1521, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.4025097 = idf(docFreq=1471, maxDocs=44218)
                0.046875 = fieldNorm(doc=1521)
          0.032607578 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
            0.032607578 = score(doc=1521,freq=2.0), product of:
              0.14046472 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04011181 = queryNorm
              0.23214069 = fieldWeight in 1521, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1521)
      0.2857143 = coord(2/7)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1820-1833
  3. Sugimoto, C.R.; Li, D.; Russell, T.G.; Finlay, S.C.; Ding, Y.: ¬The shifting sands of disciplinary development : analyzing North American Library and Information Science dissertations using latent Dirichlet allocation (2011) 0.01
    0.014180359 = product of:
      0.049631257 = sum of:
        0.0153751075 = product of:
          0.030750215 = sum of:
            0.030750215 = weight(_text_:science in 4143) [ClassicSimilarity], result of:
              0.030750215 = score(doc=4143,freq=8.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.2910318 = fieldWeight in 4143, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4143)
          0.5 = coord(1/2)
        0.03425615 = weight(_text_:library in 4143) [ClassicSimilarity], result of:
          0.03425615 = score(doc=4143,freq=10.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.32479787 = fieldWeight in 4143, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4143)
      0.2857143 = coord(2/7)
    
    Abstract
    This work identifies changes in dominant topics in library and information science (LIS) over time, by analyzing the 3,121 doctoral dissertations completed between 1930 and 2009 at North American Library and Information Science programs. The authors utilize latent Dirichlet allocation (LDA) to identify latent topics diachronically and to identify representative dissertations of those topics. The findings indicate that the main topics in LIS have changed substantially from those in the initial period (1930-1969) to the present (2000-2009). However, some themes occurred in multiple periods, representing core areas of the field: library history occurred in the first two periods; citation analysis in the second and third periods; and information-seeking behavior in the fourth and last period. Two topics occurred in three of the five periods: information retrieval and information use. One of the notable changes in the topics was the diminishing use of the word library (and related terms). This has implications for the provision of doctoral education in LIS. This work is compared to other earlier analyses and provides validation for the use of LDA in topic analysis of a discipline.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.1, S.185-204
  4. Lin, N.; Li, D.; Ding, Y.; He, B.; Qin, Z.; Tang, J.; Li, J.; Dong, T.: ¬The dynamic features of Delicious, Flickr, and YouTube (2012) 0.01
    0.012552974 = product of:
      0.043935407 = sum of:
        0.036247853 = weight(_text_:systems in 4970) [ClassicSimilarity], result of:
          0.036247853 = score(doc=4970,freq=6.0), product of:
            0.12327058 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.04011181 = queryNorm
            0.29405114 = fieldWeight in 4970, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4970)
        0.0076875538 = product of:
          0.0153751075 = sum of:
            0.0153751075 = weight(_text_:science in 4970) [ClassicSimilarity], result of:
              0.0153751075 = score(doc=4970,freq=2.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.1455159 = fieldWeight in 4970, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4970)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    This article investigates the dynamic features of social tagging vocabularies in Delicious, Flickr, and YouTube from 2003 to 2008. Three algorithms are designed to study the macro- and micro-tag growth as well as the dynamics of taggers' activities, respectively. Moreover, we propose a Tagger Tag Resource Latent Dirichlet Allocation (TTR-LDA) model to explore the evolution of topics emerging from those social vocabularies. Our results show that (a) at the macro level, tag growth in all the three tagging systems obeys power law distribution with exponents lower than 1; at the micro level, the tag growth of popular resources in all three tagging systems follows a similar power law distribution; (b) the exponents of tag growth vary in different evolving stages of resources; (c) the growth of number of taggers associated with different popular resources presents a feature of convergence over time; (d) the active level of taggers has a positive correlation with the macro-tag growth of different tagging systems; and (e) some topics evolve into several subtopics over time while others experience relatively stable stages in which their contents do not change much, and certain groups of taggers continue their interests in them.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.1, S.139-162
  5. Milojevic, S.; Sugimoto, C.R.; Yan, E.; Ding, Y.: ¬The cognitive structure of Library and Information Science : analysis of article title words (2011) 0.01
    0.011974231 = product of:
      0.041909806 = sum of:
        0.0153751075 = product of:
          0.030750215 = sum of:
            0.030750215 = weight(_text_:science in 4608) [ClassicSimilarity], result of:
              0.030750215 = score(doc=4608,freq=8.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.2910318 = fieldWeight in 4608, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4608)
          0.5 = coord(1/2)
        0.0265347 = weight(_text_:library in 4608) [ClassicSimilarity], result of:
          0.0265347 = score(doc=4608,freq=6.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.25158736 = fieldWeight in 4608, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4608)
      0.2857143 = coord(2/7)
    
    Abstract
    This study comprises a suite of analyses of words in article titles in order to reveal the cognitive structure of Library and Information Science (LIS). The use of title words to elucidate the cognitive structure of LIS has been relatively neglected. The present study addresses this gap by performing (a) co-word analysis and hierarchical clustering, (b) multidimensional scaling, and (c) determination of trends in usage of terms. The study is based on 10,344 articles published between 1988 and 2007 in 16 LIS journals. Methodologically, novel aspects of this study are: (a) its large scale, (b) removal of non-specific title words based on the "word concentration" measure (c) identification of the most frequent terms that include both single words and phrases, and (d) presentation of the relative frequencies of terms using "heatmaps". Conceptually, our analysis reveals that LIS consists of three main branches: the traditionally recognized library-related and information-related branches, plus an equally distinct bibliometrics/scientometrics branch. The three branches focus on: libraries, information, and science, respectively. In addition, our study identifies substructures within each branch. We also tentatively identify "information seeking behavior" as a branch that is establishing itself separate from the three main branches. Furthermore, we find that cognitive concepts in LIS evolve continuously, with no stasis since 1992. The most rapid development occurred between 1998 and 2001, influenced by the increased focus on the Internet. The change in the cognitive landscape is found to be driven by the emergence of new information technologies, and the retirement of old ones.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.10, S.1933-1953
  6. Li, D.; Ding, Y.; Sugimoto, C.; He, B.; Tang, J.; Yan, E.; Lin, N.; Qin, Z.; Dong, T.: Modeling topic and community structure in social tagging : the TTR-LDA-Community model (2011) 0.01
    0.010652515 = product of:
      0.0372838 = sum of:
        0.029596249 = weight(_text_:systems in 4759) [ClassicSimilarity], result of:
          0.029596249 = score(doc=4759,freq=4.0), product of:
            0.12327058 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.04011181 = queryNorm
            0.24009174 = fieldWeight in 4759, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4759)
        0.0076875538 = product of:
          0.0153751075 = sum of:
            0.0153751075 = weight(_text_:science in 4759) [ClassicSimilarity], result of:
              0.0153751075 = score(doc=4759,freq=2.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.1455159 = fieldWeight in 4759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4759)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The presence of social networks in complex systems has made networks and community structure a focal point of study in many domains. Previous studies have focused on the structural emergence and growth of communities and on the topics displayed within the network. However, few scholars have closely examined the relationship between the thematic and structural properties of networks. Therefore, this article proposes the Tagger Tag Resource-Latent Dirichlet Allocation-Community model (TTR-LDA-Community model), which combines the Latent Dirichlet Allocation (LDA) model with the Girvan-Newman community detection algorithm through an inference mechanism. Using social tagging data from Delicious, this article demonstrates the clustering of active taggers into communities, the topic distributions within communities, and the ranking of taggers, tags, and resources within these communities. The data analysis evaluates patterns in community structure and topical affiliations diachronically. The article evaluates the effectiveness of community detection and the inference mechanism embedded in the model and finds that the TTR-LDA-Community model outperforms other traditional models in tag prediction. This has implications for scholars in domains interested in community detection, profiling, and recommender systems.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.9, S.1849-1866
  7. Yan, E.; Ding, Y.: Applying centrality measures to impact analysis : a coauthorship network analysis (2009) 0.01
    0.010476663 = product of:
      0.03666832 = sum of:
        0.01522058 = product of:
          0.03044116 = sum of:
            0.03044116 = weight(_text_:science in 3083) [ClassicSimilarity], result of:
              0.03044116 = score(doc=3083,freq=4.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.2881068 = fieldWeight in 3083, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3083)
          0.5 = coord(1/2)
        0.02144774 = weight(_text_:library in 3083) [ClassicSimilarity], result of:
          0.02144774 = score(doc=3083,freq=2.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.20335563 = fieldWeight in 3083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3083)
      0.2857143 = coord(2/7)
    
    Abstract
    Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties with the aim of applying centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of 20 years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness centrality, betweenness centrality, degree centrality, and PageRank) for authors in this network. We find that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking and suggest that centrality measures can be useful indicators for impact analysis.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.10, S.2107-2118
  8. Xu, H.; Bu, Y.; Liu, M.; Zhang, C.; Sun, M.; Zhang, Y.; Meyer, E.; Salas, E.; Ding, Y.: Team power dynamics and team impact : new perspectives on scientific collaboration using career age as a proxy for team power (2022) 0.01
    0.010188336 = product of:
      0.03565917 = sum of:
        0.020339357 = product of:
          0.040678713 = sum of:
            0.040678713 = weight(_text_:science in 663) [ClassicSimilarity], result of:
              0.040678713 = score(doc=663,freq=14.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.38499892 = fieldWeight in 663, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=663)
          0.5 = coord(1/2)
        0.015319815 = weight(_text_:library in 663) [ClassicSimilarity], result of:
          0.015319815 = score(doc=663,freq=2.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.14525402 = fieldWeight in 663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=663)
      0.2857143 = coord(2/7)
    
    Abstract
    Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all coauthors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of coauthors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.10, S.1489-1505
  9. Ni, C.; Shaw, D.; Lind, S.M.; Ding, Y.: Journal impact and proximity : an assessment using bibliographic features (2013) 0.01
    0.009817732 = product of:
      0.03436206 = sum of:
        0.015978282 = product of:
          0.031956565 = sum of:
            0.031956565 = weight(_text_:science in 686) [ClassicSimilarity], result of:
              0.031956565 = score(doc=686,freq=6.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.30244917 = fieldWeight in 686, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=686)
          0.5 = coord(1/2)
        0.018383777 = weight(_text_:library in 686) [ClassicSimilarity], result of:
          0.018383777 = score(doc=686,freq=2.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.17430481 = fieldWeight in 686, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=686)
      0.2857143 = coord(2/7)
    
    Abstract
    Journals in the Information Science & Library Science category of Journal Citation Reports (JCR) were compared using both bibliometric and bibliographic features. Data collected covered journal impact factor (JIF), number of issues per year, number of authors per article, longevity, editorial board membership, frequency of publication, number of databases indexing the journal, number of aggregators providing full-text access, country of publication, JCR categories, Dewey decimal classification, and journal statement of scope. Three features significantly correlated with JIF: number of editorial board members and number of JCR categories in which a journal is listed correlated positively; journal longevity correlated negatively with JIF. Coword analysis of journal descriptions provided a proximity clustering of journals, which differed considerably from the clusters based on editorial board membership. Finally, a multiple linear regression model was built to predict the JIF based on all the collected bibliographic features.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.4, S.802-817
  10. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.01
    0.009810947 = product of:
      0.034338314 = sum of:
        0.02511325 = weight(_text_:systems in 3421) [ClassicSimilarity], result of:
          0.02511325 = score(doc=3421,freq=2.0), product of:
            0.12327058 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.04011181 = queryNorm
            0.2037246 = fieldWeight in 3421, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3421)
        0.009225064 = product of:
          0.018450128 = sum of:
            0.018450128 = weight(_text_:science in 3421) [ClassicSimilarity], result of:
              0.018450128 = score(doc=3421,freq=2.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.17461908 = fieldWeight in 3421, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3421)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Data integration and mediation have become central concerns of information technology over the past few decades. With the advent of the Web and the rapid increases in the amount of data and the number of Web documents and users, researchers have focused on enhancing the interoperability of data through the development of metadata schemes. Other researchers have looked to the wealth of metadata generated by bookmarking sites on the Social Web. While several existing ontologies have capitalized on the semantics of metadata created by tagging activities, the Upper Tag Ontology (UTO) emphasizes the structure of tagging activities to facilitate modeling of tagging data and the integration of data from different bookmarking sites as well as the alignment of tagging ontologies. UTO is described and its utility in modeling, harvesting, integrating, searching, and analyzing data is demonstrated with metadata harvested from three major social tagging systems (Delicious, Flickr, and YouTube).
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.3, S.505-521
  11. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.01
    0.009783334 = product of:
      0.03424167 = sum of:
        0.01522058 = product of:
          0.03044116 = sum of:
            0.03044116 = weight(_text_:science in 4188) [ClassicSimilarity], result of:
              0.03044116 = score(doc=4188,freq=4.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.2881068 = fieldWeight in 4188, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
        0.019021088 = product of:
          0.038042177 = sum of:
            0.038042177 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.038042177 = score(doc=4188,freq=2.0), product of:
                0.14046472 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04011181 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Date
    22. 1.2011 13:02:21
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.236-245
  12. Yan, E.; Ding, Y.; Sugimoto, C.R.: P-Rank: an indicator measuring prestige in heterogeneous scholarly networks (2011) 0.01
    0.008979997 = product of:
      0.031429987 = sum of:
        0.013046212 = product of:
          0.026092423 = sum of:
            0.026092423 = weight(_text_:science in 4349) [ClassicSimilarity], result of:
              0.026092423 = score(doc=4349,freq=4.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.24694869 = fieldWeight in 4349, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4349)
          0.5 = coord(1/2)
        0.018383777 = weight(_text_:library in 4349) [ClassicSimilarity], result of:
          0.018383777 = score(doc=4349,freq=2.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.17430481 = fieldWeight in 4349, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=4349)
      0.2857143 = coord(2/7)
    
    Abstract
    Ranking scientific productivity and prestige are often limited to homogeneous networks. These networks are unable to account for the multiple factors that constitute the scholarly communication and reward system. This study proposes a new informetric indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks containing articles, authors, and journals. P-Rank differentiates the weight of each citation based on its citing papers, citing journals, and citing authors. Articles from 16 representative library and information science journals are selected as the dataset. Principle Component Analysis is conducted to examine the relationship between P-Rank and other bibliometric indicators. We also compare the correlation and rank variances between citation counts and P-Rank scores. This work provides a new approach to examining prestige in scholarly communication networks in a more comprehensive and nuanced way.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.3, S.467-477
  13. Zhang, G.; Ding, Y.; Milojevic, S.: Citation content analysis (CCA) : a framework for syntactic and semantic analysis of citation content (2013) 0.01
    0.008979997 = product of:
      0.031429987 = sum of:
        0.013046212 = product of:
          0.026092423 = sum of:
            0.026092423 = weight(_text_:science in 975) [ClassicSimilarity], result of:
              0.026092423 = score(doc=975,freq=4.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.24694869 = fieldWeight in 975, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=975)
          0.5 = coord(1/2)
        0.018383777 = weight(_text_:library in 975) [ClassicSimilarity], result of:
          0.018383777 = score(doc=975,freq=2.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.17430481 = fieldWeight in 975, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=975)
      0.2857143 = coord(2/7)
    
    Abstract
    This study proposes a new framework for citation content analysis (CCA), for syntactic and semantic analysis of citation content that can be used to better analyze the rich sociocultural context of research behavior. This framework could be considered the next generation of citation analysis. The authors briefly review the history and features of content analysis in traditional social sciences and its previous application in library and information science (LIS). Based on critical discussion of the theoretical necessity of a new method as well as the limits of citation analysis, the nature and purposes of CCA are discussed, and potential procedures to conduct CCA, including principles to identify the reference scope, a two-dimensional (citing and cited) and two-module (syntactic and semantic) codebook, are provided and described. Future work and implications are also suggested.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.7, S.1490-1503
  14. Li, D.; Tang, J.; Ding, Y.; Shuai, X.; Chambers, T.; Sun, G.; Luo, Z.; Zhang, J.: Topic-level opinion influence model (TOIM) : an investigation using tencent microblogging (2015) 0.01
    0.008331943 = product of:
      0.029161802 = sum of:
        0.0076875538 = product of:
          0.0153751075 = sum of:
            0.0153751075 = weight(_text_:science in 2345) [ClassicSimilarity], result of:
              0.0153751075 = score(doc=2345,freq=2.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.1455159 = fieldWeight in 2345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2345)
          0.5 = coord(1/2)
        0.021474248 = product of:
          0.042948496 = sum of:
            0.042948496 = weight(_text_:applications in 2345) [ClassicSimilarity], result of:
              0.042948496 = score(doc=2345,freq=2.0), product of:
                0.17659263 = queryWeight, product of:
                  4.4025097 = idf(docFreq=1471, maxDocs=44218)
                  0.04011181 = queryNorm
                0.2432066 = fieldWeight in 2345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4025097 = idf(docFreq=1471, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2345)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Text mining has been widely used in multiple types of user-generated data to infer user opinion, but its application to microblogging is difficult because text messages are short and noisy, providing limited information about user opinion. Given that microblogging users communicate with each other to form a social network, we hypothesize that user opinion is influenced by its neighbors in the network. In this paper, we infer user opinion on a topic by combining two factors: the user's historical opinion about relevant topics and opinion influence from his/her neighbors. We thus build a topic-level opinion influence model (TOIM) by integrating both topic factor and opinion influence factor into a unified probabilistic model. We evaluate our model in one of the largest microblogging sites in China, Tencent Weibo, and the experiments show that TOIM outperforms baseline methods in opinion inference accuracy. Moreover, incorporating indirect influence further improves inference recall and f1-measure. Finally, we demonstrate some useful applications of TOIM in analyzing users' behaviors in Tencent Weibo.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2657-2673
  15. He, B.; Ding, Y.; Ni, C.: Mining enriched contextual information of scientific collaboration : a meso perspective (2011) 0.01
    0.007483331 = product of:
      0.026191657 = sum of:
        0.0108718425 = product of:
          0.021743685 = sum of:
            0.021743685 = weight(_text_:science in 4444) [ClassicSimilarity], result of:
              0.021743685 = score(doc=4444,freq=4.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.20579056 = fieldWeight in 4444, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4444)
          0.5 = coord(1/2)
        0.015319815 = weight(_text_:library in 4444) [ClassicSimilarity], result of:
          0.015319815 = score(doc=4444,freq=2.0), product of:
            0.10546913 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.04011181 = queryNorm
            0.14525402 = fieldWeight in 4444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4444)
      0.2857143 = coord(2/7)
    
    Abstract
    Studying scientific collaboration using coauthorship networks has attracted much attention in recent years. How and in what context two authors collaborate remain among the major questions. Previous studies, however, have focused on either exploring the global topology of coauthorship networks (macro perspective) or ranking the impact of individual authors (micro perspective). Neither of them has provided information on the context of the collaboration between two specific authors, which may potentially imply rich socioeconomic, disciplinary, and institutional information on collaboration. Different from the macro perspective and micro perspective, this article proposes a novel method (meso perspective) to analyze scientific collaboration, in which a contextual subgraph is extracted as the unit of analysis. A contextual subgraph is defined as a small subgraph of a large-scale coauthorship network that captures relationship and context between two coauthors. This method is applied to the field of library and information science. Topological properties of all the subgraphs in four time spans are investigated, including size, average degree, clustering coefficient, and network centralization. Results show that contextual subgprahs capture useful contextual information on two authors' collaboration.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.5, S.831-845
  16. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.01
    0.007336243 = product of:
      0.0513537 = sum of:
        0.0513537 = sum of:
          0.018450128 = weight(_text_:science in 1202) [ClassicSimilarity], result of:
            0.018450128 = score(doc=1202,freq=2.0), product of:
              0.10565929 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.04011181 = queryNorm
              0.17461908 = fieldWeight in 1202, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.046875 = fieldNorm(doc=1202)
          0.03290357 = weight(_text_:29 in 1202) [ClassicSimilarity], result of:
            0.03290357 = score(doc=1202,freq=2.0), product of:
              0.14110081 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.04011181 = queryNorm
              0.23319192 = fieldWeight in 1202, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.046875 = fieldNorm(doc=1202)
      0.14285715 = coord(1/7)
    
    Date
    29. 1.2014 16:40:41
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.352-371
  17. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.01
    0.0061135357 = product of:
      0.04279475 = sum of:
        0.04279475 = sum of:
          0.0153751075 = weight(_text_:science in 4445) [ClassicSimilarity], result of:
            0.0153751075 = score(doc=4445,freq=2.0), product of:
              0.10565929 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.04011181 = queryNorm
              0.1455159 = fieldWeight in 4445, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4445)
          0.027419642 = weight(_text_:29 in 4445) [ClassicSimilarity], result of:
            0.027419642 = score(doc=4445,freq=2.0), product of:
              0.14110081 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.04011181 = queryNorm
              0.19432661 = fieldWeight in 4445, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4445)
      0.14285715 = coord(1/7)
    
    Date
    29. 9.2018 13:24:10
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.10, S.1271-1282
  18. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.01
    0.0061135357 = product of:
      0.04279475 = sum of:
        0.04279475 = sum of:
          0.0153751075 = weight(_text_:science in 633) [ClassicSimilarity], result of:
            0.0153751075 = score(doc=633,freq=2.0), product of:
              0.10565929 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.04011181 = queryNorm
              0.1455159 = fieldWeight in 633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=633)
          0.027419642 = weight(_text_:29 in 633) [ClassicSimilarity], result of:
            0.027419642 = score(doc=633,freq=2.0), product of:
              0.14110081 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.04011181 = queryNorm
              0.19432661 = fieldWeight in 633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.0390625 = fieldNorm(doc=633)
      0.14285715 = coord(1/7)
    
    Abstract
    Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.8, S.1065-1078
  19. Ding, Y.: Scholarly communication and bibliometrics : Part 1: The scholarly communication model: literature review (1998) 0.00
    0.003917092 = product of:
      0.027419642 = sum of:
        0.027419642 = product of:
          0.054839283 = sum of:
            0.054839283 = weight(_text_:29 in 3995) [ClassicSimilarity], result of:
              0.054839283 = score(doc=3995,freq=2.0), product of:
                0.14110081 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04011181 = queryNorm
                0.38865322 = fieldWeight in 3995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3995)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Source
    International forum on information and documentation. 23(1998) no.2, S.20-29
  20. Ding, Y.; Foo, S.: Ontology research and development : part 1 - a review of ontology generation (2002) 0.00
    0.0030750216 = product of:
      0.02152515 = sum of:
        0.02152515 = product of:
          0.0430503 = sum of:
            0.0430503 = weight(_text_:science in 3808) [ClassicSimilarity], result of:
              0.0430503 = score(doc=3808,freq=2.0), product of:
                0.10565929 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.04011181 = queryNorm
                0.40744454 = fieldWeight in 3808, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3808)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Source
    Journal of information science. 28(2002) no.2, S.123-136

Years

Types

  • a 41
  • b 1
  • More… Less…