Search (219 results, page 1 of 11)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Fieldhouse, M.; Hancock-Beaulieu, M.: ¬The design of a graphical user interface for a highly interactive information retrieval system (1996) 0.08
    0.08294536 = product of:
      0.12441804 = sum of:
        0.021452487 = weight(_text_:information in 6958) [ClassicSimilarity], result of:
          0.021452487 = score(doc=6958,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.23515764 = fieldWeight in 6958, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6958)
        0.102965556 = sum of:
          0.053680386 = weight(_text_:systems in 6958) [ClassicSimilarity], result of:
            0.053680386 = score(doc=6958,freq=4.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.33612844 = fieldWeight in 6958, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=6958)
          0.04928517 = weight(_text_:22 in 6958) [ClassicSimilarity], result of:
            0.04928517 = score(doc=6958,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.2708308 = fieldWeight in 6958, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=6958)
      0.6666667 = coord(2/3)
    
    Abstract
    Reports on the design of a GUI for the Okapi 'best match' retrieval system developed at the Centre for Interactive Systems Research, City University, UK, for online library catalogues. The X-Windows interface includes an interactive query expansion (IQE) facilty which involves the user in the selection of query terms to reformulate a search. Presents the design rationale, based on a game board metaphor, and describes the features of each of the stages of the search interaction. Reports on the early operational field trial and discusses relevant evaluation issues and objectives
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  2. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.07
    0.07467609 = product of:
      0.11201413 = sum of:
        0.024771197 = weight(_text_:information in 1319) [ClassicSimilarity], result of:
          0.024771197 = score(doc=1319,freq=8.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.27153665 = fieldWeight in 1319, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.08724293 = sum of:
          0.03795776 = weight(_text_:systems in 1319) [ClassicSimilarity], result of:
            0.03795776 = score(doc=1319,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.23767869 = fieldWeight in 1319, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1319)
          0.04928517 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
            0.04928517 = score(doc=1319,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.2708308 = fieldWeight in 1319, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1319)
      0.6666667 = coord(2/3)
    
    Abstract
    Keyword based querying has been an immediate and efficient way to specify and retrieve related information that the user inquired. However, conventional document ranking based on an automatic assessment of document relevance to the query may not be the best approach when little information is given. Proposes an idea to integrate 2 existing techniques, query expansion and relevance feedback to achieve a concept-based information search for the Web
    Date
    1. 8.1996 22:08:06
    Source
    Computer networks and ISDN systems. 30(1998) nos.1/7, S.621-623
  3. Song, D.; Bruza, P.D.: Towards context sensitive information inference (2003) 0.06
    0.061105385 = product of:
      0.09165808 = sum of:
        0.0293417 = weight(_text_:information in 1428) [ClassicSimilarity], result of:
          0.0293417 = score(doc=1428,freq=22.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.32163754 = fieldWeight in 1428, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1428)
        0.06231638 = sum of:
          0.027112689 = weight(_text_:systems in 1428) [ClassicSimilarity], result of:
            0.027112689 = score(doc=1428,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.1697705 = fieldWeight in 1428, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1428)
          0.03520369 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
            0.03520369 = score(doc=1428,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.19345059 = fieldWeight in 1428, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1428)
      0.6666667 = coord(2/3)
    
    Abstract
    Humans can make hasty, but generally robust judgements about what a text fragment is, or is not, about. Such judgements are termed information inference. This article furnishes an account of information inference from a psychologistic stance. By drawing an theories from nonclassical logic and applied cognition, an information inference mechanism is proposed that makes inferences via computations of information flow through an approximation of a conceptual space. Within a conceptual space information is represented geometrically. In this article, geometric representations of words are realized as vectors in a high dimensional semantic space, which is automatically constructed from a text corpus. Two approaches were presented for priming vector representations according to context. The first approach uses a concept combination heuristic to adjust the vector representation of a concept in the light of the representation of another concept. The second approach computes a prototypical concept an the basis of exemplar trace texts and moves it in the dimensional space according to the context. Information inference is evaluated by measuring the effectiveness of query models derived by information flow computations. Results show that information flow contributes significantly to query model effectiveness, particularly with respect to precision. Moreover, retrieval effectiveness compares favorably with two probabilistic query models, and another based an semantic association. More generally, this article can be seen as a contribution towards realizing operational systems that mimic text-based human reasoning.
    Date
    22. 3.2003 19:35:46
    Footnote
    Beitrag eines Themenheftes: Mathematical, logical, and formal methods in information retrieval
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.4, S.321-334
  4. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.06
    0.056930594 = product of:
      0.08539589 = sum of:
        0.010616227 = weight(_text_:information in 2230) [ClassicSimilarity], result of:
          0.010616227 = score(doc=2230,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.116372846 = fieldWeight in 2230, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2230)
        0.07477966 = sum of:
          0.032535225 = weight(_text_:systems in 2230) [ClassicSimilarity], result of:
            0.032535225 = score(doc=2230,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.2037246 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
          0.04224443 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
            0.04224443 = score(doc=2230,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.23214069 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
      0.6666667 = coord(2/3)
    
    Abstract
    We present a deductive data model for concept-based query expansion. It is based on three abstraction levels: the conceptual, linguistic and occurrence levels. Concepts and relationships among them are represented at the conceptual level. The expression level represents natural language expressions for concepts. Each expression has one or more matching models at the occurrence level. Each model specifies the matching of the expression in database indices built in varying ways. The data model supports a concept-based query expansion and formulation tool, the ExpansionTool, for environments providing heterogeneous IR systems. Expansion is controlled by adjustable matching reliability.
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  5. Efthimiadis, E.N.: Approaches to search formulation and query expansion in information systems : DRS, DBMS, ES (1992) 0.05
    0.05221302 = product of:
      0.07831953 = sum of:
        0.017693711 = weight(_text_:information in 3871) [ClassicSimilarity], result of:
          0.017693711 = score(doc=3871,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 3871, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3871)
        0.060625814 = product of:
          0.12125163 = sum of:
            0.12125163 = weight(_text_:systems in 3871) [ClassicSimilarity], result of:
              0.12125163 = score(doc=3871,freq=10.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.75923675 = fieldWeight in 3871, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3871)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Discusses the ways in which systems and/or users formulate and reformulate searches in documents retrieval systems (DRS), database management systems (DBMS) and expert systems (ES). Concludes that query formulation and reformulation has been neglected in these fields
  6. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.04
    0.04498617 = product of:
      0.06747925 = sum of:
        0.017693711 = weight(_text_:information in 1352) [ClassicSimilarity], result of:
          0.017693711 = score(doc=1352,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 1352, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1352)
        0.04978554 = product of:
          0.09957108 = sum of:
            0.09957108 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.09957108 = score(doc=1352,freq=4.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
  7. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.04
    0.040758234 = product of:
      0.06113735 = sum of:
        0.017515881 = weight(_text_:information in 1633) [ClassicSimilarity], result of:
          0.017515881 = score(doc=1633,freq=16.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1920054 = fieldWeight in 1633, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1633)
        0.043621466 = sum of:
          0.01897888 = weight(_text_:systems in 1633) [ClassicSimilarity], result of:
            0.01897888 = score(doc=1633,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.118839346 = fieldWeight in 1633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1633)
          0.024642585 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
            0.024642585 = score(doc=1633,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.1354154 = fieldWeight in 1633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1633)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to improve the conceptual-based search by incorporating structural ontological information such as concepts and relations. Generally, Semantic-based information retrieval aims to identify relevant information based on the meanings of the query terms or on the context of the terms and the performance of semantic information retrieval is carried out through standard measures-precision and recall. Higher precision leads to the (meaningful) relevant documents obtained and lower recall leads to the less coverage of the concepts. Design/methodology/approach - In this paper, the authors enhance the existing ontology-based indexing proposed by Kohler et al., by incorporating sibling information to the index. The index designed by Kohler et al., contains only super and sub-concepts from the ontology. In addition, in our approach, we focus on two tasks; query expansion and ranking of the expanded queries, to improve the efficiency of the ontology-based search. The aforementioned tasks make use of ontological concepts, and relations existing between those concepts so as to obtain semantically more relevant search results for a given query. Findings - The proposed ontology-based indexing technique is investigated by analysing the coverage of concepts that are being populated in the index. Here, we introduce a new measure called index enhancement measure, to estimate the coverage of ontological concepts being indexed. We have evaluated the ontology-based search for the tourism domain with the tourism documents and tourism-specific ontology. The comparison of search results based on the use of ontology "with and without query expansion" is examined to estimate the efficiency of the proposed query expansion task. The ranking is compared with the ORank system to evaluate the performance of our ontology-based search. From these analyses, the ontology-based search results shows better recall when compared to the other concept-based search systems. The mean average precision of the ontology-based search is found to be 0.79 and the recall is found to be 0.65, the ORank system has the mean average precision of 0.62 and the recall is found to be 0.51, while the concept-based search has the mean average precision of 0.56 and the recall is found to be 0.42. Practical implications - When the concept is not present in the domain-specific ontology, the concept cannot be indexed. When the given query term is not available in the ontology then the term-based results are retrieved. Originality/value - In addition to super and sub-concepts, we incorporate the concepts present in same level (siblings) to the ontological index. The structural information from the ontology is determined for the query expansion. The ranking of the documents depends on the type of the query (single concept query, multiple concept queries and concept with relation queries) and the ontological relations that exists in the query and the documents. With this ontological structural information, the search results showed us better coverage of concepts with respect to the query.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.6, S.678-696
  8. Sacco, G.M.: Dynamic taxonomies and guided searches (2006) 0.04
    0.03753491 = product of:
      0.056302365 = sum of:
        0.021452487 = weight(_text_:information in 5295) [ClassicSimilarity], result of:
          0.021452487 = score(doc=5295,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.23515764 = fieldWeight in 5295, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5295)
        0.03484988 = product of:
          0.06969976 = sum of:
            0.06969976 = weight(_text_:22 in 5295) [ClassicSimilarity], result of:
              0.06969976 = score(doc=5295,freq=4.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.38301262 = fieldWeight in 5295, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5295)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A new search paradigm, in which the primary user activity is the guided exploration of a complex information space rather than the retrieval of items based on precise specifications, is proposed. The author claims that this paradigm is the norm in most practical applications, and that solutions based on traditional search methods are not effective in this context. He then presents a solution based on dynamic taxonomies, a knowledge management model that effectively guides users to reach their goal while giving them total freedom in exploring the information base. Applications, benefits, and current research are discussed.
    Date
    22. 7.2006 17:56:22
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.6, S.792-796
  9. Robertson, A.M.; Willett, P.: Applications of n-grams in textual information systems (1998) 0.04
    0.036794424 = product of:
      0.055191636 = sum of:
        0.024517128 = weight(_text_:information in 4715) [ClassicSimilarity], result of:
          0.024517128 = score(doc=4715,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.2687516 = fieldWeight in 4715, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4715)
        0.030674506 = product of:
          0.061349012 = sum of:
            0.061349012 = weight(_text_:systems in 4715) [ClassicSimilarity], result of:
              0.061349012 = score(doc=4715,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.38414678 = fieldWeight in 4715, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4715)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Provides an introduction to the use of n-grams in textual information systems, where an n-gram is a string of n, usually adjacent, characters, extracted from a section of continuous text. Applications that can be implemented efficiently and effectively using sets of n-grams include spelling errors detection and correction, query expansion, information retrieval with serial, inverted and signature files, dictionary look up, text compression, and language identification
  10. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.04
    0.03637266 = product of:
      0.05455899 = sum of:
        0.035387423 = weight(_text_:information in 2257) [ClassicSimilarity], result of:
          0.035387423 = score(doc=2257,freq=32.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.38790947 = fieldWeight in 2257, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2257)
        0.019171566 = product of:
          0.03834313 = sum of:
            0.03834313 = weight(_text_:systems in 2257) [ClassicSimilarity], result of:
              0.03834313 = score(doc=2257,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.24009174 = fieldWeight in 2257, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2257)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the book is organised in to four main parts: Part I begins with the vital question concerning the role of information within the context of the larger theoretical debate in the literature. Part II provides a critical examination of the nature of data taxonomy from the main perspectives of culture, society, nature and the mind. Part III constructively invesitgates the world of information network from the main perspectives of culture, society, nature and the mind. Part IV proposes six main theses in the authors synthetic theory of information architecture, namely, (a) the first thesis on the simpleness-complicatedness principle, (b) the second thesis on the exactness-vagueness principle (c) the third thesis on the slowness-quickness principle (d) the fourth thesis on the order-chaos principle, (e) the fifth thesis on the symmetry-asymmetry principle, and (f) the sixth thesis on the post-human stage.
    LCSH
    Information resources
    Information organization
    Information storage and retrieval systems
    RSWK
    Suchmaschine / Information Retrieval
    Subject
    Information resources
    Information organization
    Information storage and retrieval systems
    Suchmaschine / Information Retrieval
  11. Marx, E. et al.: Exploring term networks for semantic search over RDF knowledge graphs (2016) 0.04
    0.035264935 = product of:
      0.0528974 = sum of:
        0.017693711 = weight(_text_:information in 3279) [ClassicSimilarity], result of:
          0.017693711 = score(doc=3279,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 3279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3279)
        0.03520369 = product of:
          0.07040738 = sum of:
            0.07040738 = weight(_text_:22 in 3279) [ClassicSimilarity], result of:
              0.07040738 = score(doc=3279,freq=2.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.38690117 = fieldWeight in 3279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3279)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  12. Kopácsi, S. et al.: Development of a classification server to support metadata harmonization in a long term preservation system (2016) 0.04
    0.035264935 = product of:
      0.0528974 = sum of:
        0.017693711 = weight(_text_:information in 3280) [ClassicSimilarity], result of:
          0.017693711 = score(doc=3280,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.03520369 = product of:
          0.07040738 = sum of:
            0.07040738 = weight(_text_:22 in 3280) [ClassicSimilarity], result of:
              0.07040738 = score(doc=3280,freq=2.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.38690117 = fieldWeight in 3280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3280)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  13. Stojanovic, N.: On the query refinement in the ontology-based searching for information (2005) 0.03
    0.03475692 = product of:
      0.052135378 = sum of:
        0.025022687 = weight(_text_:information in 2907) [ClassicSimilarity], result of:
          0.025022687 = score(doc=2907,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.27429342 = fieldWeight in 2907, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=2907)
        0.027112689 = product of:
          0.054225378 = sum of:
            0.054225378 = weight(_text_:systems in 2907) [ClassicSimilarity], result of:
              0.054225378 = score(doc=2907,freq=2.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.339541 = fieldWeight in 2907, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2907)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Information systems. 30(2005) no.7, S.543-563
  14. Ahn, J.-w.; Brusilovsky, P.: Adaptive visualization for exploratory information retrieval (2013) 0.03
    0.033679515 = product of:
      0.05051927 = sum of:
        0.02340658 = weight(_text_:information in 2717) [ClassicSimilarity], result of:
          0.02340658 = score(doc=2717,freq=14.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.256578 = fieldWeight in 2717, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2717)
        0.027112689 = product of:
          0.054225378 = sum of:
            0.054225378 = weight(_text_:systems in 2717) [ClassicSimilarity], result of:
              0.054225378 = score(doc=2717,freq=8.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.339541 = fieldWeight in 2717, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2717)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    As the volume and breadth of online information is rapidly increasing, ad hoc search systems become less and less efficient to answer information needs of modern users. To support the growing complexity of search tasks, researchers in the field of information developed and explored a range of approaches that extend the traditional ad hoc retrieval paradigm. Among these approaches, personalized search systems and exploratory search systems attracted many followers. Personalized search explored the power of artificial intelligence techniques to provide tailored search results according to different user interests, contexts, and tasks. In contrast, exploratory search capitalized on the power of human intelligence by providing users with more powerful interfaces to support the search process. As these approaches are not contradictory, we believe that they can re-enforce each other. We argue that the effectiveness of personalized search systems may be increased by allowing users to interact with the system and learn/investigate the problem in order to reach the final goal. We also suggest that an interactive visualization approach could offer a good ground to combine the strong sides of personalized and exploratory search approaches. This paper proposes a specific way to integrate interactive visualization and personalized search and introduces an adaptive visualization based search system Adaptive VIBE that implements it. We tested the effectiveness of Adaptive VIBE and investigated its strengths and weaknesses by conducting a full-scale user study. The results show that Adaptive VIBE can improve the precision and the productivity of the personalized search system while helping users to discover more diverse sets of information.
    Footnote
    Beitrag im Rahmen einer Special section on Human-computer Information Retrieval.
    Source
    Information processing and management. 49(2013) no.5, S.1139-1164
  15. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.03
    0.031417705 = product of:
      0.047126554 = sum of:
        0.026004339 = weight(_text_:information in 2419) [ClassicSimilarity], result of:
          0.026004339 = score(doc=2419,freq=12.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.2850541 = fieldWeight in 2419, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.021122215 = product of:
          0.04224443 = sum of:
            0.04224443 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
              0.04224443 = score(doc=2419,freq=2.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.23214069 = fieldWeight in 2419, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2419)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The digital library system Daffodil is targeted at strategic support of users during the information search process. For searching, exploring and managing digital library objects it provides user-customisable information seeking patterns over a federation of heterogeneous digital libraries. In this paper evaluation results with respect to retrieval effectiveness, efficiency and user satisfaction are presented. The analysis focuses on strategic support for the scientific work-flow. Daffodil supports the whole work-flow, from data source selection over information seeking to the representation, organisation and reuse of information. By embedding high level search functionality into the scientific work-flow, the user experiences better strategic system support due to a more systematic work process. These ideas have been implemented in Daffodil followed by a qualitative evaluation. The evaluation has been conducted with 28 participants, ranging from information seeking novices to experts. The results are promising, as they support the chosen model.
    Date
    16.11.2008 16:22:48
  16. Hemmje, M.: LyberWorld - a 3D graphical user interface for fulltext retrieval (1995) 0.03
    0.031115947 = product of:
      0.04667392 = sum of:
        0.02769504 = weight(_text_:information in 2385) [ClassicSimilarity], result of:
          0.02769504 = score(doc=2385,freq=10.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.3035872 = fieldWeight in 2385, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2385)
        0.01897888 = product of:
          0.03795776 = sum of:
            0.03795776 = weight(_text_:systems in 2385) [ClassicSimilarity], result of:
              0.03795776 = score(doc=2385,freq=2.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.23767869 = fieldWeight in 2385, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2385)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    LyberWorld is a prototype IR user interface. It implements visualizations of an abstract information space: fulltext. The video demonstrates a visual user interface for the probabilistic fulltext retrieval system INQUERY. Visualizations are used to communicate information search and browsing activities in a natural way by applying metaphors of spatial navigation in abstract information spaces. Visualization tools for exploring information spaces and judging relevance of information items are introduced and an example session demonstrates the prototype. The presence of a spatial model in the user's mind is regarded as an essential contribution towards natural interaction and reduction of cognitive costs during retrieval dialogues.
    Source
    Proceeding CHI '95 Conference Companion on Human Factors in Computing Systems
  17. Ekmekcioglu, F.C.; Robertson, A.M.; Willett, P.: Effectiveness of query expansion in ranked-output document retrieval systems (1992) 0.03
    0.029886318 = product of:
      0.044829477 = sum of:
        0.01415497 = weight(_text_:information in 5689) [ClassicSimilarity], result of:
          0.01415497 = score(doc=5689,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1551638 = fieldWeight in 5689, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=5689)
        0.030674506 = product of:
          0.061349012 = sum of:
            0.061349012 = weight(_text_:systems in 5689) [ClassicSimilarity], result of:
              0.061349012 = score(doc=5689,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.38414678 = fieldWeight in 5689, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5689)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Reports an evaluation of 3 methods for the expansion of natural language queries in ranked output retrieval systems. The methods are based on term co-occurrence data, on Soundex codes, and on a string similarity measure. Searches for 110 queries in a data base of 26.280 titles and abstracts suggest that there is no significant difference in retrieval effectiveness between any of these methods and unexpanded searches
    Source
    Journal of information science. 18(1992) no.2, S.139-147
  18. Salaba, A.; Zeng, M.L.: Extending the "Explore" user task beyond subject authority data into the linked data sphere (2014) 0.03
    0.029080978 = product of:
      0.08724293 = sum of:
        0.08724293 = sum of:
          0.03795776 = weight(_text_:systems in 1465) [ClassicSimilarity], result of:
            0.03795776 = score(doc=1465,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.23767869 = fieldWeight in 1465, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1465)
          0.04928517 = weight(_text_:22 in 1465) [ClassicSimilarity], result of:
            0.04928517 = score(doc=1465,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.2708308 = fieldWeight in 1465, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1465)
      0.33333334 = coord(1/3)
    
    Abstract
    "Explore" is a user task introduced in the Functional Requirements for Subject Authority Data (FRSAD) final report. Through various case scenarios, the authors discuss how structured data, presented based on Linked Data principles and using knowledge organisation systems (KOS) as the backbone, extend the explore task within and beyond subject authority data.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  19. Smith, D.A.; Shadbolt, N.R.: FacetOntology : expressive descriptions of facets in the Semantic Web (2012) 0.03
    0.0285495 = product of:
      0.04282425 = sum of:
        0.012511344 = weight(_text_:information in 2208) [ClassicSimilarity], result of:
          0.012511344 = score(doc=2208,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.13714671 = fieldWeight in 2208, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2208)
        0.030312907 = product of:
          0.060625814 = sum of:
            0.060625814 = weight(_text_:systems in 2208) [ClassicSimilarity], result of:
              0.060625814 = score(doc=2208,freq=10.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.37961838 = fieldWeight in 2208, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2208)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The formal structure of the information on the Semantic Web lends itself to faceted browsing, an information retrieval method where users can filter results based on the values of properties ("facets"). Numerous faceted browsers have been created to browse RDF and Linked Data, but these systems use their own ontologies for defining how data is queried to populate their facets. Since the source data is the same format across these systems (specifically, RDF), we can unify the different methods of describing how to quer the underlying data, to enable compatibility across systems, and provide an extensible base ontology for future systems. To this end, we present FacetOntology, an ontology that defines how to query data to form a faceted browser, and a number of transformations and filters that can be applied to data before it is shown to users. FacetOntology overcomes limitations in the expressivity of existing work, by enabling the full expressivity of SPARQL when selecting data for facets. By applying a FacetOntology definition to data, a set of facets are specified, each with queries and filters to source RDF data, which enables faceted browsing systems to be created using that RDF data.
  20. Athukorala, K.; Glowacka, D.; Jacucci, G.; Oulasvirta, A.; Vreeken, J.: Is exploratory search different? : a comparison of information search behavior for exploratory and lookup tasks (2016) 0.03
    0.028290596 = product of:
      0.042435892 = sum of:
        0.015323205 = weight(_text_:information in 3150) [ClassicSimilarity], result of:
          0.015323205 = score(doc=3150,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.16796975 = fieldWeight in 3150, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3150)
        0.027112689 = product of:
          0.054225378 = sum of:
            0.054225378 = weight(_text_:systems in 3150) [ClassicSimilarity], result of:
              0.054225378 = score(doc=3150,freq=8.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.339541 = fieldWeight in 3150, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3150)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Exploratory search is an increasingly important activity yet challenging for users. Although there exists an ample amount of research into understanding exploration, most of the major information retrieval (IR) systems do not provide tailored and adaptive support for such tasks. One reason is the lack of empirical knowledge on how to distinguish exploratory and lookup search behaviors in IR systems. The goal of this article is to investigate how to separate the 2 types of tasks in an IR system using easily measurable behaviors. In this article, we first review characteristics of exploratory search behavior. We then report on a controlled study of 6 search tasks with 3 exploratory-comparison, knowledge acquisition, planning-and 3 lookup tasks-fact-finding, navigational, question answering. The results are encouraging, showing that IR systems can distinguish the 2 search categories in the course of a search session. The most distinctive indicators that characterize exploratory search behaviors are query length, maximum scroll depth, and task completion time. However, 2 tasks are borderline and exhibit mixed characteristics. We assess the applicability of this finding by reporting on several classification experiments. Our results have valuable implications for designing tailored and adaptive IR systems.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.11, S.2635-2651

Authors

Years

Languages

  • e 197
  • d 18
  • chi 1
  • f 1
  • More… Less…

Types

  • a 191
  • el 20
  • m 17
  • r 4
  • p 2
  • s 2
  • x 2
  • More… Less…