Search (62 results, page 1 of 4)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  1. Slavic, A.; Cordeiro, M.I.: Core requirements for automation of analytico-synthetic classifications (2004) 0.01
    0.008117716 = product of:
      0.05682401 = sum of:
        0.049943037 = weight(_text_:representation in 2651) [ClassicSimilarity], result of:
          0.049943037 = score(doc=2651,freq=4.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.4313432 = fieldWeight in 2651, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=2651)
        0.006880972 = product of:
          0.020642916 = sum of:
            0.020642916 = weight(_text_:29 in 2651) [ClassicSimilarity], result of:
              0.020642916 = score(doc=2651,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 2651, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2651)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    The paper analyses the importance of data presentation and modelling and its role in improving the management, use and exchange of analytico-synthetic classifications in automated systems. Inefficiencies, in this respect, hinder the automation of classification systems that offer the possibility of building compound index/search terms. The lack of machine readable data expressing the semantics and structure of a classification vocabulary has negative effects on information management and retrieval, thus restricting the potential of both automated systems and classifications themselves. The authors analysed the data representation structure of three general analytico-synthetic classification systems (BC2-Bliss Bibliographic Classification; BSO-Broad System of Ordering; UDC-Universal Decimal Classification) and put forward some core requirements for classification data representation
    Date
    29. 8.2004 14:20:40
  2. Beall, J.: Editing the Dewey Decimal Classification online : the evolution of the DDC database (1992) 0.01
    0.00803734 = product of:
      0.05626138 = sum of:
        0.04708675 = weight(_text_:representation in 2085) [ClassicSimilarity], result of:
          0.04708675 = score(doc=2085,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.40667427 = fieldWeight in 2085, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0625 = fieldNorm(doc=2085)
        0.00917463 = product of:
          0.027523888 = sum of:
            0.027523888 = weight(_text_:29 in 2085) [ClassicSimilarity], result of:
              0.027523888 = score(doc=2085,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.31092256 = fieldWeight in 2085, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2085)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Pages
    S.29-37
    Source
    Classification research for knowledge representation and organization. Proc. 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991. Ed. by N.J. Williamson u. M. Hudon
  3. Kent, R.E.: Organizing conceptual knowledge online : metadata interoperability and faceted classification (1998) 0.01
    0.0070223557 = product of:
      0.049156487 = sum of:
        0.041200902 = weight(_text_:representation in 57) [ClassicSimilarity], result of:
          0.041200902 = score(doc=57,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35583997 = fieldWeight in 57, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=57)
        0.007955586 = product of:
          0.023866756 = sum of:
            0.023866756 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.023866756 = score(doc=57,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.2708308 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=57)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Conceptual Knowledge Markup Language (CKML), an application of XML, is a new standard being promoted for the specification of online conceptual knowledge (Kent and Shrivastava, 1998). CKML follows the philosophy of Conceptual Knowledge Processing (Wille, 1982), a principled approach to knowledge representation and data analysis, which advocates the development of methodologies and techniques to support people in their rational thinking, judgement and actions. CKML was developed and is being used in the WAVE networked information discovery and retrieval system (Kent and Neuss, 1994) as a standard for the specification of conceptual knowledge
    Date
    30.12.2001 16:22:41
  4. Kwasnik, B.H.: ¬The role of classification in knowledge representation (1999) 0.01
    0.006019162 = product of:
      0.042134132 = sum of:
        0.03531506 = weight(_text_:representation in 2464) [ClassicSimilarity], result of:
          0.03531506 = score(doc=2464,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 2464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=2464)
        0.006819073 = product of:
          0.02045722 = sum of:
            0.02045722 = weight(_text_:22 in 2464) [ClassicSimilarity], result of:
              0.02045722 = score(doc=2464,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 2464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2464)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Source
    Library trends. 48(1999) no.1, S.22-47
  5. Ménard, E.; Mas, S.; Alberts, I.: Faceted classification for museum artefacts : a methodology to support web site development of large cultural organizations (2010) 0.01
    0.0054118107 = product of:
      0.037882674 = sum of:
        0.03329536 = weight(_text_:representation in 3945) [ClassicSimilarity], result of:
          0.03329536 = score(doc=3945,freq=4.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.28756213 = fieldWeight in 3945, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.03125 = fieldNorm(doc=3945)
        0.004587315 = product of:
          0.013761944 = sum of:
            0.013761944 = weight(_text_:29 in 3945) [ClassicSimilarity], result of:
              0.013761944 = score(doc=3945,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.15546128 = fieldWeight in 3945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3945)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Purpose - This research project aims to provide a new visual representation of the Artefacts Canada digital collection, as well as a means for users to browse this content. Artefacts Canada Humanities is a database containing approximately 3.5 million records describing the different collections of Canadian museums. Design/methodology/approach - A four-step methodology was adopted for the development of the faceted taxonomy model. First, a best practice review consisting of an extensive analysis of existing terminology standards in museum communities and public web interfaces of large cultural organizations was performed. The second step of the methodology entailed a domain analysis; this involved extracting and comparing relevant concepts from terminological authoritative sources. The third step proceeded to term clustering and entity listing,which involved the breaking-up of the taxonomy domains into potential facets. An incremental user testing was also realized in order to validate and refine the taxonomy components (facets, values, and relationships). Findings - The project resulted in a bilingual and expandable vocabulary structure that will further be used to describe the Artefacts Canada database records. The new taxonomy simplifies the representation of complex content by grouping objects into similar facets to classify all records of the Artefacts Canada database. The user-friendly bilingual taxonomy provides worldwide visitors with the means to better access Canadian virtual museum collections. Originality/value - Few methodological tools are available for museums which wish to adopt a faceted approach in the development of their web sites. For practitioners, the methodology developed within this project is a direct contribution to support web site development of large cultural organizations.
    Date
    29. 8.2010 12:31:55
  6. Gödert, W.: Facet classification in online retrieval (1991) 0.00
    0.004236948 = product of:
      0.059317272 = sum of:
        0.059317272 = weight(_text_:mental in 5825) [ClassicSimilarity], result of:
          0.059317272 = score(doc=5825,freq=2.0), product of:
            0.16438161 = queryWeight, product of:
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.025165197 = queryNorm
            0.36085102 = fieldWeight in 5825, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5825)
      0.071428575 = coord(1/14)
    
    Abstract
    "Online retrieval" conjures up a very different mental image now than in 1991, the year this article was written, and the year Tim Berners-Lee first revealed the new hypertext system he called the World Wide Web. Gödert shows that truncation and Boolean logic, combined with notation from a faceted classification system, will be a powerful way of searching for information. It undoubtedly is, but no system built now would require a user searching for material on "nervous systems of bone fish" to enter "Fdd$ and Leaa$". This is worth reading for someone interested in seeing how searching and facets can go together, but the web has made this article quite out of date.
  7. Tudhope, D.; Binding, C.; Blocks, D.; Cuncliffe, D.: Representation and retrieval in faceted systems (2003) 0.00
    0.0042041745 = product of:
      0.05885844 = sum of:
        0.05885844 = weight(_text_:representation in 2703) [ClassicSimilarity], result of:
          0.05885844 = score(doc=2703,freq=8.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.50834286 = fieldWeight in 2703, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2703)
      0.071428575 = coord(1/14)
    
    Abstract
    This paper discusses two inter-related themes: the retrieval potential of faceted thesauri and XML representations of fundamental facets. Initial findings are discussed from the ongoing 'FACET' project, in collaboration with the National Museum of Science and Industry. The work discussed seeks to take advantage of the structure afforded by faceted systems for multi-term queries and flexible matching, focusing in this paper an the Art and Architecture Thesaurus. A multi-term matching function yields ranked results with partial matches via semantic term expansion, based an a measure of distance over the semantic index space formed by thesaurus relationships. Our intention is to drive the system from general representations and a common query structure and interface. To this end, we are developing an XML representation based an work by the Classification Research Group an fundamental facets or categories. The XML representation maps categories to particular thesauri and hierarchies. The system interface, which is configured by the mapping, incorporates a thesaurus browser with navigation history together with a term search facility and drag and drop query builder.
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  8. Lim, E.: Southeast Asian subject gateways : an examination of their classification practices (2000) 0.00
    0.003914299 = product of:
      0.054800183 = sum of:
        0.054800183 = product of:
          0.082200274 = sum of:
            0.04128583 = weight(_text_:29 in 6040) [ClassicSimilarity], result of:
              0.04128583 = score(doc=6040,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.46638384 = fieldWeight in 6040, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6040)
            0.04091444 = weight(_text_:22 in 6040) [ClassicSimilarity], result of:
              0.04091444 = score(doc=6040,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.46428138 = fieldWeight in 6040, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6040)
          0.6666667 = coord(2/3)
      0.071428575 = coord(1/14)
    
    Date
    22. 6.2002 19:42:47
    Source
    International cataloguing and bibliographic control. 29(2000) no.3, S.45-48
  9. National Seminar on Classification in the Digital Environment : Papers contributed to the National Seminar an Classification in the Digital Environment, Bangalore, 9-11 August 2001 (2001) 0.00
    0.0036880572 = product of:
      0.0258164 = sum of:
        0.023543375 = weight(_text_:representation in 2047) [ClassicSimilarity], result of:
          0.023543375 = score(doc=2047,freq=8.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.20333713 = fieldWeight in 2047, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.015625 = fieldNorm(doc=2047)
        0.0022730245 = product of:
          0.0068190736 = sum of:
            0.0068190736 = weight(_text_:22 in 2047) [ClassicSimilarity], result of:
              0.0068190736 = score(doc=2047,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.07738023 = fieldWeight in 2047, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2047)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Date
    2. 1.2004 10:35:22
    Footnote
    AHUJA and SATIJA (Relevance of Ranganathan's Classification Theory in the Age of Digital Libraries) note that traditional bibliographic classification systems have been applied in the digital environment with only limited success. They find that the "inherent flexibility of electronic manipulation of documents or their surrogates should allow a more organic approach to allocation of new subjects and appropriate linkages between subject hierarchies." (p. 18). Ahija and Satija also suggest that it is necessary to shift from a "subject" focus to a "need" focus when applying classification theory in the digital environment. They find Ranganathan's framework applicable in the digital environment. Although Ranganathan's focus is "subject oriented and hence emphasise the hierarchical and linear relationships" (p. 26), his framework "can be successfully adopted with certain modifications ... in the digital environment." (p. 26). SHAH and KUMAR (Model for System Unification of Geographical Schedules (Space Isolates)) report an a plan to develop a single schedule for geographical Subdivision that could be used across all classification systems. The authors argue that this is needed in order to facilitate interoperability in the digital environment. SAN SEGUNDO MANUEL (The Representation of Knowledge as a Symbolization of Productive Electronic Information) distills different approaches and definitions of the term "representation" as it relates to representation of knowledge in the library and information science literature and field. SHARADA (Linguistic and Document Classification: Paradigmatic Merger Possibilities) suggests the development of a universal indexing language. The foundation for the universal indexing language is Chomsky's Minimalist Program and Ranganathan's analytico-synthetic classification theory; Acording to the author, based an these approaches, it "should not be a problem" (p. 62) to develop a universal indexing language.
    SELVI (Knowledge Classification of Digital Information Materials with Special Reference to Clustering Technique) finds that it is essential to classify digital material since the amount of material that is becoming available is growing. Selvi suggests using automated classification to "group together those digital information materials or documents that are "most similar" (p. 65). This can be attained by using Cluster analysis methods. PRADHAN and THULASI (A Study of the Use of Classification and Indexing Systems by Web Resource Directories) compare and contrast the classificatory structures of Google, Yahoo, and Looksmart's directories and compare the directories to Dewey Decimal Classification, Library of Congress Classification and Colon Classification's classificatory structures. They find differentes between the directories' and the bibliographic classification systems' classificatory structures and principles. These differentes stem from the fact that bibliographic classification systems are used to "classify academic resources for the research community" (p. 83) and directories "aim to categorize a wider breath of information groups, entertainment, recreation, govt. information, commercial information" (p. 83). NEELAMEGHAN (Hierarchy, Hierarchical Relation and Hierarchical Arrangement) reviews the concept of hierarchy and the formation of hierarchical structures across a variety of domains. NEELAMEGHAN and PRADAD (Digitized Schemes for Subject Classification and Thesauri: Complementary Roles) demonstrate how thesaural relationships (NT, BT, and RT) can be applied to a classification scheme, the Colon Classification in this Gase. NEELAMEGHAN and ASUNDI (Metadata Framework for Describing Embodied Knowledge and Subject Content) propose to use the Generalized Facet Structure framework which is based an Ranganathan's General Theory of Knowledge Classification as a framework for describing the content of documents in a metadata element set for the representation of web documents. CHUDAMANI (Classified Catalogue as a Tool for Subject Based Information Retrieval in both Traditional and Electronic Library Environment) explains why the classified catalogue is superior to the alphabetic cata logue and argues that the same is true in the digital environment.
  10. Drabenstott, K.M.; Riester, L.C.; Dede, B.A.: Shelflisting using expert systems (1992) 0.00
    0.0033633395 = product of:
      0.04708675 = sum of:
        0.04708675 = weight(_text_:representation in 2101) [ClassicSimilarity], result of:
          0.04708675 = score(doc=2101,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.40667427 = fieldWeight in 2101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0625 = fieldNorm(doc=2101)
      0.071428575 = coord(1/14)
    
    Source
    Classification research for knowledge representation and organization. Proc. 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991. Ed. by N.J. Williamson u. M. Hudon
  11. Micco, M.: Suggestions for automating the Library of Congress Classification schedules (1992) 0.00
    0.0033633395 = product of:
      0.04708675 = sum of:
        0.04708675 = weight(_text_:representation in 2108) [ClassicSimilarity], result of:
          0.04708675 = score(doc=2108,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.40667427 = fieldWeight in 2108, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0625 = fieldNorm(doc=2108)
      0.071428575 = coord(1/14)
    
    Source
    Classification research for knowledge representation and organization. Proc. 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991. Ed. by N.J. Williamson u. M. Hudon
  12. Vizine-Goetz, D.: ¬The Dewey Decimal Classification as an online classification tool (1992) 0.00
    0.0033633395 = product of:
      0.04708675 = sum of:
        0.04708675 = weight(_text_:representation in 2115) [ClassicSimilarity], result of:
          0.04708675 = score(doc=2115,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.40667427 = fieldWeight in 2115, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0625 = fieldNorm(doc=2115)
      0.071428575 = coord(1/14)
    
    Source
    Classification research for knowledge representation and organization. Proc. 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991. Ed. by N.J. Williamson u. M. Hudon
  13. Guenther, R.S.: ¬The USMARC Format for Classification Data : development and implementation (1992) 0.00
    0.0033633395 = product of:
      0.04708675 = sum of:
        0.04708675 = weight(_text_:representation in 2996) [ClassicSimilarity], result of:
          0.04708675 = score(doc=2996,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.40667427 = fieldWeight in 2996, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0625 = fieldNorm(doc=2996)
      0.071428575 = coord(1/14)
    
    Source
    Classification research for knowledge representation and organization. Proc. 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991. Ed. by N.J. Williamson u. M. Hudon
  14. Svenonius, E.; Liu, S.; Subrahmanyam, B.: Automation of chain indexing (1992) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 2114) [ClassicSimilarity], result of:
          0.03531506 = score(doc=2114,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 2114, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=2114)
      0.071428575 = coord(1/14)
    
    Source
    Classification research for knowledge representation and organization. Proc. 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991. Ed. by N.J. Williamson u. M. Hudon
  15. Kwasnik, B.H.: Commercial Web sites and the use of classification schemes : the case of Amazon.Com (2003) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 2696) [ClassicSimilarity], result of:
          0.03531506 = score(doc=2696,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 2696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=2696)
      0.071428575 = coord(1/14)
    
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  16. Järvelin, K.; Niemi, T.: Deductive information retrieval based on classifications (1993) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 2229) [ClassicSimilarity], result of:
          0.03531506 = score(doc=2229,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 2229, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=2229)
      0.071428575 = coord(1/14)
    
    Abstract
    Modern fact databses contain abundant data classified through several classifications. Typically, users msut consult these classifications in separate manuals or files, thus making their effective use difficult. Contemporary database systems do little support deductive use of classifications. In this study we show how deductive data management techniques can be applied to the utilization of data value classifications. Computation of transitive class relationships is of primary importance here. We define a representation of classifications which supports transitive computation and present an operation-oriented deductive query language tailored for classification-based deductive information retrieval. The operations of this language are on the same abstraction level as relational algebra operations and can be integrated with these to form a powerful and flexible query language for deductive information retrieval. We define the integration of these operations and demonstrate the usefulness of the language in terms of several sample queries
  17. Lösse, M.; Svensson, L.: "Classification at a Crossroad" : Internationales UDC-Seminar 2009 in Den Haag, Niederlande (2010) 0.00
    0.0023606569 = product of:
      0.033049196 = sum of:
        0.033049196 = product of:
          0.049573794 = sum of:
            0.020642916 = weight(_text_:29 in 4379) [ClassicSimilarity], result of:
              0.020642916 = score(doc=4379,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 4379, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4379)
            0.02893088 = weight(_text_:22 in 4379) [ClassicSimilarity], result of:
              0.02893088 = score(doc=4379,freq=4.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.32829654 = fieldWeight in 4379, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4379)
          0.6666667 = coord(2/3)
      0.071428575 = coord(1/14)
    
    Abstract
    Am 29. und 30. Oktober 2009 fand in der Königlichen Bibliothek in Den Haag das zweite internationale UDC-Seminar zum Thema "Classification at a Crossroad" statt. Organisiert wurde diese Konferenz - wie auch die erste Konferenz dieser Art im Jahr 2007 - vom UDC-Konsortium (UDCC). Im Mittelpunkt der diesjährigen Veranstaltung stand die Erschließung des World Wide Web unter besserer Nutzung von Klassifikationen (im Besonderen natürlich der UDC), einschließlich benutzerfreundlicher Repräsentationen von Informationen und Wissen. Standards, neue Technologien und Dienste, semantische Suche und der multilinguale Zugriff spielten ebenfalls eine Rolle. 135 Teilnehmer aus 35 Ländern waren dazu nach Den Haag gekommen. Das Programm umfasste mit 22 Vorträgen aus 14 verschiedenen Ländern eine breite Palette, wobei Großbritannien mit fünf Beiträgen am stärksten vertreten war. Die Tagesschwerpunkte wurden an beiden Konferenztagen durch die Eröffnungsvorträge gesetzt, die dann in insgesamt sechs thematischen Sitzungen weiter vertieft wurden.
    Date
    22. 1.2010 15:06:54
  18. Duncan, E.B.: Structuring knowledge bases for designers of learning materials (1989) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 2478) [ClassicSimilarity], result of:
          0.02942922 = score(doc=2478,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 2478, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2478)
      0.071428575 = coord(1/14)
    
    Abstract
    Three pre-web articles about using hypertext for knowledge representation. Duncan discusses how to use graphical, hypertext displays (she used Xerox PARC's NoteCards on a Xerox 1186 workstation) along with concept maps and facet analysis, a combination that would now be done with topic maps. The screen shots of her graphical displays are quite interesting. Her interest in facets is in how to use them to show things to different people in different ways, for example, so that experts can enter knowledge into a system in one way while novices can see it in another. Duncan found that facet labels (e.g. Process and Product) prompted the expert to think of related concepts when inputting data, and made navigation easier for users. Facets can be joined together, e.g. "Agents (causing) Process," leading to a "reasoning system." She is especially interested in how to show relstionships between two things: e.g., A causes B, A uses B, A occurs in B. This is an important question in facet theory, but probably not worth worrying about in a small online classification where the relations are fixed and obvious. These articles may be difficult to find, in which case the reader can find a nice sumary in the next article, by Ellis and Vasconcelos (2000). Anyone interested in tracing the history of facets and hypertext will, however, want to see the originals.
  19. Duncan, E.B.: ¬A faceted approach to hypertext (1989) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 2480) [ClassicSimilarity], result of:
          0.02942922 = score(doc=2480,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 2480, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2480)
      0.071428575 = coord(1/14)
    
    Abstract
    Three pre-web articles about using hypertext for knowledge representation. Duncan discusses how to use graphical, hypertext displays (she used Xerox PARC's NoteCards on a Xerox 1186 workstation) along with concept maps and facet analysis, a combination that would now be done with topic maps. The screen shots of her graphical displays are quite interesting. Her interest in facets is in how to use them to show things to different people in different ways, for example, so that experts can enter knowledge into a system in one way while novices can see it in another. Duncan found that facet labels (e.g. Process and Product) prompted the expert to think of related concepts when inputting data, and made navigation easier for users. Facets can be joined together, e.g. "Agents (causing) Process," leading to a "reasoning system." She is especially interested in how to show relstionships between two things: e.g., A causes B, A uses B, A occurs in B. This is an important question in facet theory, but probably not worth worrying about in a small online classification where the relations are fixed and obvious. These articles may be difficult to find, in which case the reader can find a nice sumary in the next article, by Ellis and Vasconcelos (2000). Anyone interested in tracing the history of facets and hypertext will, however, want to see the originals.
  20. Duncan, E.B.: ¬A concept-map thesaurus as a knowledge-based hypertext interface to a bibliographic database (1990) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 2481) [ClassicSimilarity], result of:
          0.02942922 = score(doc=2481,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 2481, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2481)
      0.071428575 = coord(1/14)
    
    Abstract
    Three pre-web articles about using hypertext for knowledge representation. Duncan discusses how to use graphical, hypertext displays (she used Xerox PARC's NoteCards on a Xerox 1186 workstation) along with concept maps and facet analysis, a combination that would now be done with topic maps. The screen shots of her graphical displays are quite interesting. Her interest in facets is in how to use them to show things to different people in different ways, for example, so that experts can enter knowledge into a system in one way while novices can see it in another. Duncan found that facet labels (e.g. Process and Product) prompted the expert to think of related concepts when inputting data, and made navigation easier for users. Facets can be joined together, e.g. "Agents (causing) Process," leading to a "reasoning system." She is especially interested in how to show relstionships between two things: e.g., A causes B, A uses B, A occurs in B. This is an important question in facet theory, but probably not worth worrying about in a small online classification where the relations are fixed and obvious. These articles may be difficult to find, in which case the reader can find a nice sumary in the next article, by Ellis and Vasconcelos (2000). Anyone interested in tracing the history of facets and hypertext will, however, want to see the originals.

Years

Languages

  • e 52
  • d 7
  • hu 1
  • i 1
  • nl 1
  • More… Less…

Types

  • a 54
  • el 7
  • m 2
  • s 2
  • r 1
  • More… Less…

Classifications