Search (47 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  • × year_i:[2010 TO 2020}
  1. Padmavathi, T.; Krishnamurthy, M.: Semantic Web tools and techniques for knowledge organization : an overview (2017) 0.01
    0.0070326724 = product of:
      0.049228705 = sum of:
        0.041200902 = weight(_text_:representation in 3618) [ClassicSimilarity], result of:
          0.041200902 = score(doc=3618,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35583997 = fieldWeight in 3618, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3618)
        0.008027801 = product of:
          0.024083402 = sum of:
            0.024083402 = weight(_text_:29 in 3618) [ClassicSimilarity], result of:
              0.024083402 = score(doc=3618,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.27205724 = fieldWeight in 3618, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3618)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    The enormous amount of information generated every day and spread across the web is diversified in nature far beyond human consumption. To overcome this difficulty, the transformation of current unstructured information into a structured form called a "Semantic Web" was proposed by Tim Berners-Lee in 1989 to enable computers to understand and interpret the information they store. The aim of the semantic web is the integration of heterogeneous and distributed data spread across the web for knowledge discovery. The core of sematic web technologies includes knowledge representation languages RDF and OWL, ontology editors and reasoning tools, and ontology query languages such as SPARQL have also been discussed.
    Date
    29. 9.2017 18:30:57
  2. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.01
    0.0067647635 = product of:
      0.047353342 = sum of:
        0.041619197 = weight(_text_:representation in 2192) [ClassicSimilarity], result of:
          0.041619197 = score(doc=2192,freq=4.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35945266 = fieldWeight in 2192, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
        0.005734144 = product of:
          0.017202431 = sum of:
            0.017202431 = weight(_text_:29 in 2192) [ClassicSimilarity], result of:
              0.017202431 = score(doc=2192,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19432661 = fieldWeight in 2192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    This book constitutes the refereed proceedings of the 8th Metadata and Semantics Research Conference, MTSR 2014, held in Karlsruhe, Germany, in November 2014. The 23 full papers and 9 short papers presented were carefully reviewed and selected from 57 submissions. The papers are organized in several sessions and tracks. They cover the following topics: metadata and linked data: tools and models; (meta) data quality assessment and curation; semantic interoperability, ontology-based data access and representation; big data and digital libraries in health, science and technology; metadata and semantics for open repositories, research information systems and data infrastructure; metadata and semantics for cultural collections and applications; semantics for agriculture, food and environment.
    Content
    Metadata and linked data.- Tools and models.- (Meta)data quality assessment and curation.- Semantic interoperability, ontology-based data access and representation.- Big data and digital libraries in health, science and technology.- Metadata and semantics for open repositories, research information systems and data infrastructure.- Metadata and semantics for cultural collections and applications.- Semantics for agriculture, food and environment.
  3. Waltinger, U.; Mehler, A.; Lösch, M.; Horstmann, W.: Hierarchical classification of OAI metadata using the DDC taxonomy (2011) 0.01
    0.005023338 = product of:
      0.035163365 = sum of:
        0.02942922 = weight(_text_:representation in 4841) [ClassicSimilarity], result of:
          0.02942922 = score(doc=4841,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 4841, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4841)
        0.005734144 = product of:
          0.017202431 = sum of:
            0.017202431 = weight(_text_:29 in 4841) [ClassicSimilarity], result of:
              0.017202431 = score(doc=4841,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19432661 = fieldWeight in 4841, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4841)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    In the area of digital library services, the access to subject-specific metadata of scholarly publications is of utmost interest. One of the most prevalent approaches for metadata exchange is the XML-based Open Archive Initiative (OAI) Protocol for Metadata Harvesting (OAI-PMH). However, due to its loose requirements regarding metadata content there is no strict standard for consistent subject indexing specified, which is furthermore needed in the digital library domain. This contribution addresses the problem of automatic enhancement of OAI metadata by means of the most widely used universal classification schemes in libraries-the Dewey Decimal Classification (DDC). To be more specific, we automatically classify scientific documents according to the DDC taxonomy within three levels using a machine learning-based classifier that relies solely on OAI metadata records as the document representation. The results show an asymmetric distribution of documents across the hierarchical structure of the DDC taxonomy and issues of data sparseness. However, the performance of the classifier shows promising results on all three levels of the DDC.
    Pages
    S.29-40
  4. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.005015969 = product of:
      0.03511178 = sum of:
        0.02942922 = weight(_text_:representation in 4553) [ClassicSimilarity], result of:
          0.02942922 = score(doc=4553,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 4553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.0056825615 = product of:
          0.017047685 = sum of:
            0.017047685 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.017047685 = score(doc=4553,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  5. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    0.004414383 = product of:
      0.061801355 = sum of:
        0.061801355 = weight(_text_:representation in 4515) [ClassicSimilarity], result of:
          0.061801355 = score(doc=4515,freq=18.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.53375995 = fieldWeight in 4515, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.071428575 = coord(1/14)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    LCSH
    Knowledge representation (Information theory)
    Subject
    Knowledge representation (Information theory)
  6. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    0.0042041745 = product of:
      0.05885844 = sum of:
        0.05885844 = weight(_text_:representation in 2801) [ClassicSimilarity], result of:
          0.05885844 = score(doc=2801,freq=8.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.50834286 = fieldWeight in 2801, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
      0.071428575 = coord(1/14)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
  7. Knowledge graphs : new directions for knowledge representation on the Semantic Web (2019) 0.00
    0.0036409218 = product of:
      0.0509729 = sum of:
        0.0509729 = weight(_text_:representation in 51) [ClassicSimilarity], result of:
          0.0509729 = score(doc=51,freq=6.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.44023782 = fieldWeight in 51, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=51)
      0.071428575 = coord(1/14)
    
    Abstract
    The increasingly pervasive nature of the Web, expanding to devices and things in everydaylife, along with new trends in Artificial Intelligence call for new paradigms and a new look onKnowledge Representation and Processing at scale for the Semantic Web. The emerging, but stillto be concretely shaped concept of "Knowledge Graphs" provides an excellent unifying metaphorfor this current status of Semantic Web research. More than two decades of Semantic Webresearch provides a solid basis and a promising technology and standards stack to interlink data,ontologies and knowledge on the Web. However, neither are applications for Knowledge Graphsas such limited to Linked Open Data, nor are instantiations of Knowledge Graphs in enterprises- while often inspired by - limited to the core Semantic Web stack. This report documents theprogram and the outcomes of Dagstuhl Seminar 18371 "Knowledge Graphs: New Directions forKnowledge Representation on the Semantic Web", where a group of experts from academia andindustry discussed fundamental questions around these topics for a week in early September 2018,including the following: what are knowledge graphs? Which applications do we see to emerge?Which open research questions still need be addressed and which technology gaps still need tobe closed?
  8. Rüther, M.; Fock, J.; Schultz-Krutisch, T.; Bandholtz, T.: Classification and reference vocabulary in linked environment data (2011) 0.00
    0.0035673599 = product of:
      0.049943037 = sum of:
        0.049943037 = weight(_text_:representation in 4816) [ClassicSimilarity], result of:
          0.049943037 = score(doc=4816,freq=4.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.4313432 = fieldWeight in 4816, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=4816)
      0.071428575 = coord(1/14)
    
    Abstract
    The Federal Environment Agency (UBA), Germany, has a long tradition in knowledge organization, using a library along with many Web-based information systems. The backbone of this information space is a classification system enhanced by a reference vocabulary which consists of a thesaurus, a gazetteer and a chronicle. Over the years, classification has increasingly been relegated to the background compared with the reference vocabulary indexing and full text search. Bibliographic items are no longer classified directly but tagged with thesaurus terms, with those terms being classified. Since 2010 we have been developing a linked data representation of this knowledge base. While we are linking bibliographic and observation data with the controlled vocabulary in a Resource Desrcription Framework (RDF) representation, the classification may be revisited as a powerful organization system by inference. This also raises questions about the quality and feasibility of an unambiguous classification of thesaurus terms.
  9. Slimani, T.: Semantic annotation : the mainstay of Semantic Web (2013) 0.00
    0.0029429218 = product of:
      0.041200902 = sum of:
        0.041200902 = weight(_text_:representation in 4307) [ClassicSimilarity], result of:
          0.041200902 = score(doc=4307,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35583997 = fieldWeight in 4307, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4307)
      0.071428575 = coord(1/14)
    
    Abstract
    Given that semantic Web realization is based on the critical mass of metadata accessibility and the representation of data with formal knowledge, it needs to generate metadata that is specific, easy to understand and well-defined. However, semantic annotation of the web documents is the successful way to make the Semantic Web vision a reality. This paper introduces the Semantic Web and its vision (stack layers) with regard to some concept definitions that helps the understanding of semantic annotation. Additionally, this paper introduces the semantic annotation categories, tools, domains and models.
  10. Pattuelli, M.C.; Rubinow, S.: Charting DBpedia : towards a cartography of a major linked dataset (2012) 0.00
    0.0029429218 = product of:
      0.041200902 = sum of:
        0.041200902 = weight(_text_:representation in 829) [ClassicSimilarity], result of:
          0.041200902 = score(doc=829,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35583997 = fieldWeight in 829, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=829)
      0.071428575 = coord(1/14)
    
    Abstract
    This paper provides an analysis of the knowledge structure underlying DBpedia, one of the largest and most heavily used datasets in the current Linked Data landscape. The study reveals an evolving knowledge representation environment where different descriptive and classification approaches are employed concurrently. This analysis opens up a new area of research to which the knowledge organization community can make a significant contribution.
  11. Bianchini, C.; Willer, M.: ISBD resource and Its description in the context of the Semantic Web (2014) 0.00
    0.0029429218 = product of:
      0.041200902 = sum of:
        0.041200902 = weight(_text_:representation in 1998) [ClassicSimilarity], result of:
          0.041200902 = score(doc=1998,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35583997 = fieldWeight in 1998, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1998)
      0.071428575 = coord(1/14)
    
    Abstract
    This article explores the question "What is an International Standard for Bibliographic Description (ISBD) resource in the context of the Semantic Web, and what is the relationship of its description to the linked data?" This question is discussed against the background of the dichotomy between the description and access using the Semantic Web differentiation of the three logical layers: real-world objects, web of data, and special purpose (bibliographic) data. The representation of bibliographic data as linked data is discussed, distinguishing the description of a resource from the iconic/objective and the informational/subjective viewpoints. In the conclusion, the authors give views on possible directions of future development of the ISBD.
  12. Willer, M.; Dunsire, G.: ISBD, the UNIMARC bibliographic format, and RDA : interoperability issues in namespaces and the linked data environment (2014) 0.00
    0.0029429218 = product of:
      0.041200902 = sum of:
        0.041200902 = weight(_text_:representation in 1999) [ClassicSimilarity], result of:
          0.041200902 = score(doc=1999,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35583997 = fieldWeight in 1999, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1999)
      0.071428575 = coord(1/14)
    
    Abstract
    The article is an updated and expanded version of a paper presented to International Federation of Library Associations and Institutions in 2013. It describes recent work involving the representation of International Standard for Bibliographic Description (ISBD) and UNIMARC (UNIversal MARC) in Resource Description Framework (RDF), the basis of the Semantic Web and linked data. The UNIMARC Bibliographic format is used to illustrate issues arising from the development of a bibliographic element set and its semantic alignment with ISBD. The article discusses the use of such alignments in the automated processing of linked data for interoperability, using examples from ISBD, UNIMARC, and Resource Description and Access.
  13. Menzel, C.: Knowledge representation, the World Wide Web, and the evolution of logic (2011) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 761) [ClassicSimilarity], result of:
          0.03531506 = score(doc=761,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 761, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=761)
      0.071428575 = coord(1/14)
    
  14. Ghorbel, H.; Bahri, A.; Bouaziz, R.: Fuzzy ontologies building platform for Semantic Web : FOB platform (2012) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 98) [ClassicSimilarity], result of:
          0.02942922 = score(doc=98,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 98, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=98)
      0.071428575 = coord(1/14)
    
    Abstract
    The unstructured design of Web resources favors human comprehension, but makes difficult the automatic exploitation of the contents of these resources by machines. So, the Semantic Web aims at making the cooperation between human and machine possible, by giving any information a well defined meaning. The first weavings of the Semantic Web are already prepared. Machines become able to treat and understand the data that were accustomed to only visualization, by using ontologies constitute an essential element of the Semantic Web, as they serve as a form of knowledge representation, sharing, and reuse. However, the Web content is subject to imperfection, and crisp ontologies become less suitable to represent concepts with imprecise definitions. To overcome this problem, fuzzy ontologies constitute a promising research orientation. Indeed, the definition of fuzzy ontologies components constitutes an issue that needs to be well treated. It is necessary to have an appropriate methodology of building an operationalization of fuzzy ontological models. This chapter defines a fuzzy ontological model based on fuzzy description logic. This model uses a new approach for the formal description of fuzzy ontologies. This new methodology shows how all the basic components defined for fuzzy ontologies can be constructed.
  15. Willer, M.; Dunsire, G.: Bibliographic information organization in the Semantic Web (2013) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 2143) [ClassicSimilarity], result of:
          0.02942922 = score(doc=2143,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 2143, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2143)
      0.071428575 = coord(1/14)
    
    Abstract
    New technologies will underpin the future generation of library catalogues. To facilitate their role providing information, serving users, and fulfilling their mission as cultural heritage and memory institutions, libraries must take a technological leap; their standards and services must be transformed to those of the Semantic Web. Bibliographic Information Organization in the Semantic Web explores the technologies that may power future library catalogues, and argues the necessity of such a leap. The text introduces international bibliographic standards and models, and fundamental concepts in their representation in the context of the Semantic Web. Subsequent chapters cover bibliographic information organization, linked open data, methodologies for publishing library metadata, discussion of the wider environment (museum, archival and publishing communities) and users, followed by a conclusion.
  16. Gómez-Pérez, A.; Corcho, O.: Ontology languages for the Semantic Web (2015) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 3297) [ClassicSimilarity], result of:
          0.02942922 = score(doc=3297,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 3297, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3297)
      0.071428575 = coord(1/14)
    
    Abstract
    Ontologies have proven to be an essential element in many applications. They are used in agent systems, knowledge management systems, and e-commerce platforms. They can also generate natural language, integrate intelligent information, provide semantic-based access to the Internet, and extract information from texts in addition to being used in many other applications to explicitly declare the knowledge embedded in them. However, not only are ontologies useful for applications in which knowledge plays a key role, but they can also trigger a major change in current Web contents. This change is leading to the third generation of the Web-known as the Semantic Web-which has been defined as "the conceptual structuring of the Web in an explicit machine-readable way."1 This definition does not differ too much from the one used for defining an ontology: "An ontology is an explicit, machinereadable specification of a shared conceptualization."2 In fact, new ontology-based applications and knowledge architectures are developing for this new Web. A common claim for all of these approaches is the need for languages to represent the semantic information that this Web requires-solving the heterogeneous data exchange in this heterogeneous environment. Here, we don't decide which language is best of the Semantic Web. Rather, our goal is to help developers find the most suitable language for their representation needs. The authors analyze the most representative ontology languages created for the Web and compare them using a common framework.
  17. Kaminski, R.; Schaub, T.; Wanko, P.: ¬A tutorial on hybrid answer set solving with clingo (2017) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 3937) [ClassicSimilarity], result of:
          0.02942922 = score(doc=3937,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 3937, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3937)
      0.071428575 = coord(1/14)
    
    Abstract
    Answer Set Programming (ASP) has become an established paradigm for Knowledge Representation and Reasoning, in particular, when it comes to solving knowledge-intense combinatorial (optimization) problems. ASP's unique pairing of a simple yet rich modeling language with highly performant solving technology has led to an increasing interest in ASP in academia as well as industry. To further boost this development and make ASP fit for real world applications it is indispensable to equip it with means for an easy integration into software environments and for adding complementary forms of reasoning. In this tutorial, we describe how both issues are addressed in the ASP system clingo. At first, we outline features of clingo's application programming interface (API) that are essential for multi-shot ASP solving, a technique for dealing with continuously changing logic programs. This is illustrated by realizing two exemplary reasoning modes, namely branch-and-bound-based optimization and incremental ASP solving. We then switch to the design of the API for integrating complementary forms of reasoning and detail this in an extensive case study dealing with the integration of difference constraints. We show how the syntax of these constraints is added to the modeling language and seamlessly merged into the grounding process. We then develop in detail a corresponding theory propagator for difference constraints and present how it is integrated into clingo's solving process.
  18. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.00
    0.0019571495 = product of:
      0.027400091 = sum of:
        0.027400091 = product of:
          0.041100137 = sum of:
            0.020642916 = weight(_text_:29 in 4649) [ClassicSimilarity], result of:
              0.020642916 = score(doc=4649,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
            0.02045722 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.02045722 = score(doc=4649,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.6666667 = coord(2/3)
      0.071428575 = coord(1/14)
    
    Date
    29. 7.2011 14:44:56
    26.12.2011 13:40:22
  19. Hooland, S. van; Verborgh, R.; Wilde, M. De; Hercher, J.; Mannens, E.; Wa, R.Van de: Evaluating the success of vocabulary reconciliation for cultural heritage collections (2013) 0.00
    0.0019571495 = product of:
      0.027400091 = sum of:
        0.027400091 = product of:
          0.041100137 = sum of:
            0.020642916 = weight(_text_:29 in 662) [ClassicSimilarity], result of:
              0.020642916 = score(doc=662,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=662)
            0.02045722 = weight(_text_:22 in 662) [ClassicSimilarity], result of:
              0.02045722 = score(doc=662,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=662)
          0.6666667 = coord(2/3)
      0.071428575 = coord(1/14)
    
    Date
    22. 3.2013 19:29:20
  20. Hitzler, P.; Krötzsch, M.; Rudolph, S.: Foundations of Semantic Web technologies (2010) 0.00
    0.0016816697 = product of:
      0.023543375 = sum of:
        0.023543375 = weight(_text_:representation in 359) [ClassicSimilarity], result of:
          0.023543375 = score(doc=359,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.20333713 = fieldWeight in 359, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.03125 = fieldNorm(doc=359)
      0.071428575 = coord(1/14)
    
    Abstract
    This text introduces the standardized knowledge representation languages for modeling ontologies operating at the core of the semantic web. It covers RDF schema, Web Ontology Language (OWL), rules, query languages, the OWL 2 revision, and the forthcoming Rule Interchange Format (RIF). A 2010 CHOICE Outstanding Academic Title ! The nine chapters of the book guide the reader through the major foundational languages for the semantic Web and highlight the formal semantics. ! the book has very interesting supporting material and exercises, is oriented to W3C standards, and provides the necessary foundations for the semantic Web. It will be easy to follow by the computer scientist who already has a basic background on semantic Web issues; it will also be helpful for both self-study and teaching purposes. I recommend this book primarily as a complementary textbook for a graduate or undergraduate course in a computer science or a Web science academic program. --Computing Reviews, February 2010 This book is unique in several respects. It contains an in-depth treatment of all the major foundational languages for the Semantic Web and provides a full treatment of the underlying formal semantics, which is central to the Semantic Web effort. It is also the very first textbook that addresses the forthcoming W3C recommended standards OWL 2 and RIF. Furthermore, the covered topics and underlying concepts are easily accessible for the reader due to a clear separation of syntax and semantics ! I am confident this book will be well received and play an important role in training a larger number of students who will seek to become proficient in this growing discipline.

Languages

  • e 41
  • d 6

Types

  • a 28
  • m 15
  • el 8
  • s 7
  • r 1
  • More… Less…