Search (18 results, page 1 of 1)

  • × type_ss:"m"
  • × theme_ss:"Wissensrepräsentation"
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.01106417 = product of:
      0.07744919 = sum of:
        0.07063012 = weight(_text_:representation in 987) [ClassicSimilarity], result of:
          0.07063012 = score(doc=987,freq=8.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.6100114 = fieldWeight in 987, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.006819073 = product of:
          0.02045722 = sum of:
            0.02045722 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.02045722 = score(doc=987,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
    LCSH
    Knowledge representation (Information theory)
    Subject
    Knowledge representation (Information theory)
  2. Hodgson, J.P.E.: Knowledge representation and language in AI (1991) 0.01
    0.006971834 = product of:
      0.097605675 = sum of:
        0.097605675 = weight(_text_:representation in 1529) [ClassicSimilarity], result of:
          0.097605675 = score(doc=1529,freq=22.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.84299123 = fieldWeight in 1529, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1529)
      0.071428575 = coord(1/14)
    
    Abstract
    The aim of this book is to highlight the relationship between knowledge representation and language in artificial intelligence, and in particular on the way in which the choice of representation influences the language used to discuss a problem - and vice versa. Opening with a discussion of knowledge representation methods, and following this with a look at reasoning methods, the author begins to make his case for the intimate relationship between language and representation. He shows how each representation method fits particularly well with some reasoning methods and less so with others, using specific languages as examples. The question of representation change, an important and complex issue about which very little is known, is addressed. Dr Hodgson gathers together recent work on problem solving, showing how, in some cases, it has been possible to use representation changes to recast problems into a language that makes them easier to solve. The author maintains throughout that the relationships that this book explores lie at the heart of the construction of large systems, examining a number of the current large AI systems from the viewpoint of representation and language to prove his point.
    LCSH
    Knowledge / representation (Information theory)
    Subject
    Knowledge / representation (Information theory)
  3. Semantic knowledge and semantic representations (1995) 0.00
    0.0047935597 = product of:
      0.06710983 = sum of:
        0.06710983 = weight(_text_:mental in 3568) [ClassicSimilarity], result of:
          0.06710983 = score(doc=3568,freq=4.0), product of:
            0.16438161 = queryWeight, product of:
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.025165197 = queryNorm
            0.40825632 = fieldWeight in 3568, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.03125 = fieldNorm(doc=3568)
      0.071428575 = coord(1/14)
    
    LCSH
    Humans / Memory (Mental processes)
    Subject
    Humans / Memory (Mental processes)
  4. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    0.004414383 = product of:
      0.061801355 = sum of:
        0.061801355 = weight(_text_:representation in 4515) [ClassicSimilarity], result of:
          0.061801355 = score(doc=4515,freq=18.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.53375995 = fieldWeight in 4515, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.071428575 = coord(1/14)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    LCSH
    Knowledge representation (Information theory)
    Subject
    Knowledge representation (Information theory)
  5. Helbig, H.: Knowledge representation and the semantics of natural language (2014) 0.00
    0.0042041745 = product of:
      0.05885844 = sum of:
        0.05885844 = weight(_text_:representation in 2396) [ClassicSimilarity], result of:
          0.05885844 = score(doc=2396,freq=8.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.50834286 = fieldWeight in 2396, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2396)
      0.071428575 = coord(1/14)
    
    Abstract
    Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the preservation of cultural achievements and their transmission from one generation to the other. During the last few decades, the flod of digitalized information has been growing tremendously. This tendency will continue with the globalisation of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical understanding and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this context, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the generation of natural language expressions from formal representations. This book presents a method for the semantic representation of natural language expressions (texts, sentences, phrases, etc.) which can be used as a universal knowledge representation paradigm in the human sciences, like linguistics, cognitive psychology, or philosophy of language, as well as in computational linguistics and in artificial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
  6. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    0.0042041745 = product of:
      0.05885844 = sum of:
        0.05885844 = weight(_text_:representation in 2801) [ClassicSimilarity], result of:
          0.05885844 = score(doc=2801,freq=8.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.50834286 = fieldWeight in 2801, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
      0.071428575 = coord(1/14)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
  7. Weiermann, S.L.: Semantische Netze und Begriffsdeskription in der Wissensrepräsentation (2000) 0.00
    0.00416192 = product of:
      0.058266878 = sum of:
        0.058266878 = weight(_text_:representation in 3001) [ClassicSimilarity], result of:
          0.058266878 = score(doc=3001,freq=4.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.50323373 = fieldWeight in 3001, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3001)
      0.071428575 = coord(1/14)
    
    LCSH
    Information representation (Information theory)
    Subject
    Information representation (Information theory)
  8. Handbook on ontologies (2004) 0.00
    0.0029727998 = product of:
      0.041619197 = sum of:
        0.041619197 = weight(_text_:representation in 1952) [ClassicSimilarity], result of:
          0.041619197 = score(doc=1952,freq=4.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.35945266 = fieldWeight in 1952, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1952)
      0.071428575 = coord(1/14)
    
    LCSH
    Knowledge representation (Information theory)
    Subject
    Knowledge representation (Information theory)
  9. Kavouras, M.; Kokla, M.: Theories of geographic concepts : ontological approaches to semantic integration (2008) 0.00
    0.00237824 = product of:
      0.03329536 = sum of:
        0.03329536 = weight(_text_:representation in 3275) [ClassicSimilarity], result of:
          0.03329536 = score(doc=3275,freq=4.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.28756213 = fieldWeight in 3275, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.03125 = fieldNorm(doc=3275)
      0.071428575 = coord(1/14)
    
    Abstract
    Written by experts in the field, this book addresses theoretical, formal, and pragmatic issues of geographic knowledge representation and integration based on an ontological approach. The first section sets the context by emphasizing the importance of philosophical, cognitive, and formal theories in preserving the semantics of geographic concepts during ontology development and integration. Section two exhausts all theoretical issues related to the subject and section three introduces a number of formal tools. Section four introduces a general method with the necessary steps to ontology integration and applies it to a number of ontology integration cases.
    Content
    Introduction -- Geographic ontologies -- Semantic interoperability -- Ontologies -- Concepts -- Semantics -- Knowledge representation instruments -- Formal concept analysis -- Conceptual graphs -- Channel theory -- Description logics -- Natural language and semantic information extraction -- Similarity -- Integration framework -- Integration approaches -- Integration guidelines -- Epilogue.
  10. Curras, E.: Ontologies, taxonomy and thesauri in information organisation and retrieval (2010) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 3276) [ClassicSimilarity], result of:
          0.02942922 = score(doc=3276,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 3276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
      0.071428575 = coord(1/14)
    
    Content
    Inhalt: 1. From classifications to ontologies Knowledge - A new concept of knowledge - Knowledge and information - Knowledge organisation - Knowledge organisation and representation - Cognitive sciences - Talent management - Learning systematisation - Historical evolution - From classification to knowledge organisation - Why ontologies exist - Ontologies - The structure of ontologies 2. Taxonomies and thesauri From ordering to taxonomy - The origins of taxonomy - Hierarchical and horizontal order - Correlation with classifications - Taxonomy in computer science - Computing taxonomy - Definitions - Virtual taxonomy, cybernetic taxonomy - Taxonomy in Information Science - Similarities between taxonomies and thesauri - ifferences between taxonomies and thesauri 3. Thesauri Terminology in classification systems - Terminological languages - Thesauri - Thesauri definitions - Conditions that a thesaurus must fulfil - Historical evolution - Classes of thesauri 4. Thesauri in (cladist) systematics Systematics - Systematics as a noun - Definitions and historic evolution over time - Differences between taxonomy and systematics - Systematics in thesaurus construction theory - Classic, numerical and cladist systematics - Classic systematics in information science - Numerical systematics in information science - Thesauri in cladist systematics - Systematics in information technology - Some examples 5. Thesauri in systems theory Historical evolution - Approach to systems - Systems theory applied to the construction of thesauri - Components - Classes of system - Peculiarities of these systems - Working methods - Systems theory applied to ontologies and taxonomies
  11. Developments in applied artificial intelligence : proceedings / 16th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2003, Loughborough, UK, June 23 - 26, 2003 (2003) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 441) [ClassicSimilarity], result of:
          0.02942922 = score(doc=441,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 441, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=441)
      0.071428575 = coord(1/14)
    
    Abstract
    This book constitutes the refereed proceedings of the 16th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2003, held in Loughborough, UK in June 2003. The 81 revised full papers presented were carefully reviewed and selected from more than 140 submissions. Among the topics addressed are soft computing, fuzzy logic, diagnosis, knowledge representation, knowledge management, automated reasoning, machine learning, planning and scheduling, evolutionary computation, computer vision, agent systems, algorithmic learning, tutoring systems, financial analysis, etc.
  12. Arp, R.; Smith, B.; Spear, A.D.: Building ontologies with basic formal ontology (2015) 0.00
    0.0016816697 = product of:
      0.023543375 = sum of:
        0.023543375 = weight(_text_:representation in 3444) [ClassicSimilarity], result of:
          0.023543375 = score(doc=3444,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.20333713 = fieldWeight in 3444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.03125 = fieldNorm(doc=3444)
      0.071428575 = coord(1/14)
    
    Abstract
    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now used by over one hundred ontology projects around the world, and offers examples of domain ontologies that utilize BFO. The book also describes Web Ontology Language (OWL), a common framework for Semantic Web technologies. Throughout, the book provides concrete recommendations for the design and construction of domain ontologies.
  13. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.00
    6.8883057E-4 = product of:
      0.009643627 = sum of:
        0.009643627 = product of:
          0.02893088 = sum of:
            0.02893088 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.02893088 = score(doc=3355,freq=4.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  14. Hüsken, P.: Informationssuche im Semantic Web : Methoden des Information Retrieval für die Wissensrepräsentation (2006) 0.00
    4.9149804E-4 = product of:
      0.006880972 = sum of:
        0.006880972 = product of:
          0.020642916 = sum of:
            0.020642916 = weight(_text_:29 in 4332) [ClassicSimilarity], result of:
              0.020642916 = score(doc=4332,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 4332, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4332)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    12. 2.2011 17:29:27
  15. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.00
    4.9149804E-4 = product of:
      0.006880972 = sum of:
        0.006880972 = product of:
          0.020642916 = sum of:
            0.020642916 = weight(_text_:29 in 439) [ClassicSimilarity], result of:
              0.020642916 = score(doc=439,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 439, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
  16. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.00
    4.0958173E-4 = product of:
      0.005734144 = sum of:
        0.005734144 = product of:
          0.017202431 = sum of:
            0.017202431 = weight(_text_:29 in 4706) [ClassicSimilarity], result of:
              0.017202431 = score(doc=4706,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19432661 = fieldWeight in 4706, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    29. 7.2011 14:44:56
  17. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.00
    3.276654E-4 = product of:
      0.004587315 = sum of:
        0.004587315 = product of:
          0.013761944 = sum of:
            0.013761944 = weight(_text_:29 in 4707) [ClassicSimilarity], result of:
              0.013761944 = score(doc=4707,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.15546128 = fieldWeight in 4707, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    29. 7.2011 14:44:56
  18. Frické, M.: Logic and the organization of information (2012) 0.00
    2.867072E-4 = product of:
      0.0040139006 = sum of:
        0.0040139006 = product of:
          0.012041701 = sum of:
            0.012041701 = weight(_text_:29 in 1782) [ClassicSimilarity], result of:
              0.012041701 = score(doc=1782,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.13602862 = fieldWeight in 1782, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    16. 3.2012 11:26:29

Languages

  • e 16
  • d 2

Subjects

Classifications