Search (4 results, page 1 of 1)

  • × year_i:[1990 TO 2000}
  • × author_ss:"Chen, H."
  1. Chen, H.; Houston, A.L.; Sewell, R.R.; Schatz, B.R.: Internet browsing and searching : user evaluations of category map and concept space techniques (1998) 0.00
    0.0033895585 = product of:
      0.047453817 = sum of:
        0.047453817 = weight(_text_:mental in 869) [ClassicSimilarity], result of:
          0.047453817 = score(doc=869,freq=2.0), product of:
            0.16438161 = queryWeight, product of:
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.025165197 = queryNorm
            0.28868082 = fieldWeight in 869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.03125 = fieldNorm(doc=869)
      0.071428575 = coord(1/14)
    
    Abstract
    The Internet provides an exceptional testbed for developing algorithms that can improve bowsing and searching large information spaces. Browsing and searching tasks are susceptible to problems of information overload and vocabulary differences. Much of the current research is aimed at the development and refinement of algorithms to improve browsing and searching by addressing these problems. Our research was focused on discovering whether two of the algorithms our research group has developed, a Kohonen algorithm category map for browsing, and an automatically generated concept space algorithm for searching, can help improve browsing and / or searching the Internet. Our results indicate that a Kohonen self-organizing map (SOM)-based algorithm can successfully categorize a large and eclectic Internet information space (the Entertainment subcategory of Yahoo!) into manageable sub-spaces that users can successfully navigate to locate a homepage of interest to them. The SOM algorithm worked best with browsing tasks that were very broad, and in which subjects skipped around between categories. Subjects especially liked the visual and graphical aspects of the map. Subjects who tried to do a directed search, and those that wanted to use the more familiar mental models (alphabetic or hierarchical organization) for browsing, found that the work did not work well. The results from the concept space experiment were especially encouraging. There were no significant differences among the precision measures for the set of documents identified by subject-suggested terms, thesaurus-suggested terms, and the combination of subject- and thesaurus-suggested terms. The recall measures indicated that the combination of subject- and thesaurs-suggested terms exhibited significantly better recall than subject-suggested terms alone. Furthermore, analysis of the homepages indicated that there was limited overlap between the homepages retrieved by the subject-suggested and thesaurus-suggested terms. Since the retrieval homepages for the most part were different, this suggests that a user can enhance a keyword-based search by using an automatically generated concept space. Subejcts especially liked the level of control that they could exert over the search, and the fact that the terms suggested by the thesaurus were 'real' (i.e., orininating in the homepages) and therefore guaranteed to have retrieval success
  2. Chen, H.; Ng, T.: ¬An algorithmic approach to concept exploration in a large knowledge network (automatic thesaurus consultation) : symbolic branch-and-bound search versus connectionist Hopfield Net Activation (1995) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 2203) [ClassicSimilarity], result of:
          0.03531506 = score(doc=2203,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 2203, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=2203)
      0.071428575 = coord(1/14)
    
    Abstract
    Presents a framework for knowledge discovery and concept exploration. In order to enhance the concept exploration capability of knowledge based systems and to alleviate the limitation of the manual browsing approach, develops 2 spreading activation based algorithms for concept exploration in large, heterogeneous networks of concepts (eg multiple thesauri). One algorithm, which is based on the symbolic AI paradigma, performs a conventional branch-and-bound search on a semantic net representation to identify other highly relevant concepts (a serial, optimal search process). The 2nd algorithm, which is absed on the neural network approach, executes the Hopfield net parallel relaxation and convergence process to identify 'convergent' concepts for some initial queries (a parallel, heuristic search process). Tests these 2 algorithms on a large text-based knowledge network of about 13.000 nodes (terms) and 80.000 directed links in the area of computing technologies
  3. Ramsey, M.C.; Chen, H.; Zhu, B.; Schatz, B.R.: ¬A collection of visual thesauri for browsing large collections of geographic images (1999) 0.00
    5.734144E-4 = product of:
      0.008027801 = sum of:
        0.008027801 = product of:
          0.024083402 = sum of:
            0.024083402 = weight(_text_:29 in 3922) [ClassicSimilarity], result of:
              0.024083402 = score(doc=3922,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.27205724 = fieldWeight in 3922, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3922)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    21. 7.1999 13:48:29
  4. Carmel, E.; Crawford, S.; Chen, H.: Browsing in hypertext : a cognitive study (1992) 0.00
    4.0589727E-4 = product of:
      0.0056825615 = sum of:
        0.0056825615 = product of:
          0.017047685 = sum of:
            0.017047685 = weight(_text_:22 in 7469) [ClassicSimilarity], result of:
              0.017047685 = score(doc=7469,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19345059 = fieldWeight in 7469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=7469)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    IEEE transactions on systems, man and cybernetics. 22(1992) no.5, S.865-884