Search (3 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Multilinguale Probleme"
  1. Airio, E.; Kettunen, K.: Does dictionary based bilingual retrieval work in a non-normalized index? (2009) 0.01
    0.007095774 = product of:
      0.03547887 = sum of:
        0.03547887 = product of:
          0.07095774 = sum of:
            0.07095774 = weight(_text_:etc in 4224) [ClassicSimilarity], result of:
              0.07095774 = score(doc=4224,freq=2.0), product of:
                0.19761753 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.036484417 = queryNorm
                0.35906604 = fieldWeight in 4224, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4224)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Many operational IR indexes are non-normalized, i.e. no lemmatization or stemming techniques, etc. have been employed in indexing. This poses a challenge for dictionary-based cross-language retrieval (CLIR), because translations are mostly lemmas. In this study, we face the challenge of dictionary-based CLIR in a non-normalized index. We test two optional approaches: FCG (Frequent Case Generation) and s-gramming. The idea of FCG is to automatically generate the most frequent inflected forms for a given lemma. FCG has been tested in monolingual retrieval and has been shown to be a good method for inflected retrieval, especially for highly inflected languages. S-gramming is an approximate string matching technique (an extension of n-gramming). The language pairs in our tests were English-Finnish, English-Swedish, Swedish-Finnish and Finnish-Swedish. Both our approaches performed quite well, but the results varied depending on the language pair. S-gramming and FCG performed quite equally in all the other language pairs except Finnish-Swedish, where s-gramming outperformed FCG.
  2. Pollitt, A.S.; Ellis, G.: Multilingual access to document databases (1993) 0.00
    0.0041203364 = product of:
      0.02060168 = sum of:
        0.02060168 = product of:
          0.04120336 = sum of:
            0.04120336 = weight(_text_:problems in 1302) [ClassicSimilarity], result of:
              0.04120336 = score(doc=1302,freq=2.0), product of:
                0.15058853 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.036484417 = queryNorm
                0.27361554 = fieldWeight in 1302, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1302)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This paper examines the reasons why approaches to facilitate document retrieval which apply AI (Artificial Intelligence) or Expert Systems techniques, relying on so-called "natural language" query statements from the end-user will result in sub-optimal solutions. It does so by reflecting on the nature of language and the fundamental problems in document retrieval. Support is given to the work of thesaurus builders and indexers with illustrations of how their work may be utilised in a generally applicable computer-based document retrieval system using Multilingual MenUSE software. The EuroMenUSE interface providing multilingual document access to EPOQUE, the European Parliament's Online Query System is described.
  3. Bian, G.-W.; Chen, H.-H.: Cross-language information access to multilingual collections on the Internet (2000) 0.00
    0.002965881 = product of:
      0.014829405 = sum of:
        0.014829405 = product of:
          0.02965881 = sum of:
            0.02965881 = weight(_text_:22 in 4436) [ClassicSimilarity], result of:
              0.02965881 = score(doc=4436,freq=2.0), product of:
                0.12776221 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036484417 = queryNorm
                0.23214069 = fieldWeight in 4436, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4436)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Date
    16. 2.2000 14:22:39