Search (19 results, page 1 of 1)

  • × theme_ss:"Inhaltsanalyse"
  1. Xie, H.; Li, X.; Wang, T.; Lau, R.Y.K.; Wong, T.-L.; Chen, L.; Wang, F.L.; Li, Q.: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy (2016) 0.04
    0.04332816 = product of:
      0.064992234 = sum of:
        0.05215535 = weight(_text_:resources in 2671) [ClassicSimilarity], result of:
          0.05215535 = score(doc=2671,freq=6.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2794208 = fieldWeight in 2671, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.03125 = fieldNorm(doc=2671)
        0.0128368875 = product of:
          0.025673775 = sum of:
            0.025673775 = weight(_text_:management in 2671) [ClassicSimilarity], result of:
              0.025673775 = score(doc=2671,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.14896142 = fieldWeight in 2671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2671)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In recent years, there has been a rapid growth of user-generated data in collaborative tagging (a.k.a. folksonomy-based) systems due to the prevailing of Web 2.0 communities. To effectively assist users to find their desired resources, it is critical to understand user behaviors and preferences. Tag-based profile techniques, which model users and resources by a vector of relevant tags, are widely employed in folksonomy-based systems. This is mainly because that personalized search and recommendations can be facilitated by measuring relevance between user profiles and resource profiles. However, conventional measurements neglect the sentiment aspect of user-generated tags. In fact, tags can be very emotional and subjective, as users usually express their perceptions and feelings about the resources by tags. Therefore, it is necessary to take sentiment relevance into account into measurements. In this paper, we present a novel generic framework SenticRank to incorporate various sentiment information to various sentiment-based information for personalized search by user profiles and resource profiles. In this framework, content-based sentiment ranking and collaborative sentiment ranking methods are proposed to obtain sentiment-based personalized ranking. To the best of our knowledge, this is the first work of integrating sentiment information to address the problem of the personalized tag-based search in collaborative tagging systems. Moreover, we compare the proposed sentiment-based personalized search with baselines in the experiments, the results of which have verified the effectiveness of the proposed framework. In addition, we study the influences by popular sentiment dictionaries, and SenticNet is the most prominent knowledge base to boost the performance of personalized search in folksonomy.
    Source
    Information processing and management. 52(2016) no.1, S.61-72
  2. Bertola, F.; Patti, V.: Ontology-based affective models to organize artworks in the social semantic web (2016) 0.04
    0.035790663 = product of:
      0.053685993 = sum of:
        0.037639882 = weight(_text_:resources in 2669) [ClassicSimilarity], result of:
          0.037639882 = score(doc=2669,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.20165458 = fieldWeight in 2669, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2669)
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 2669) [ClassicSimilarity], result of:
              0.032092217 = score(doc=2669,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 2669, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2669)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this paper, we focus on applying sentiment analysis to resources from online art collections, by exploiting, as information source, tags intended as textual traces that visitors leave to comment artworks on social platforms. We present a framework where methods and tools from a set of disciplines, ranging from Semantic and Social Web to Natural Language Processing, provide us the building blocks for creating a semantic social space to organize artworks according to an ontology of emotions. The ontology is inspired by the Plutchik's circumplex model, a well-founded psychological model of human emotions. Users can be involved in the creation of the emotional space, through a graphical interactive interface. The development of such semantic space enables new ways of accessing and exploring art collections. The affective categorization model and the emotion detection output are encoded into W3C ontology languages. This gives us the twofold advantage to enable tractable reasoning on detected emotions and related artworks, and to foster the interoperability and integration of tools developed in the Semantic Web and Linked Data community. The proposal has been evaluated against a real-word case study, a dataset of tagged multimedia artworks from the ArsMeteo Italian online collection, and validated through a user study.
    Source
    Information processing and management. 52(2016) no.1, S.139-162
  3. Raieli, R.: ¬The semantic hole : enthusiasm and caution around multimedia information retrieval (2012) 0.03
    0.031457655 = product of:
      0.094372965 = sum of:
        0.094372965 = sum of:
          0.045385253 = weight(_text_:management in 4888) [ClassicSimilarity], result of:
            0.045385253 = score(doc=4888,freq=4.0), product of:
              0.17235184 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.051133685 = queryNorm
              0.2633291 = fieldWeight in 4888, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4888)
          0.048987713 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
            0.048987713 = score(doc=4888,freq=4.0), product of:
              0.17906146 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051133685 = queryNorm
              0.27358043 = fieldWeight in 4888, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4888)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper centres on the tools for the management of new digital documents, which are not only textual, but also visual-video, audio or multimedia in the full sense. Among the aims is to demonstrate that operating within the terms of generic Information Retrieval through textual language only is limiting, and it is instead necessary to consider ampler criteria, such as those of MultiMedia Information Retrieval, according to which, every type of digital document can be analyzed and searched by the proper elements of language for its proper nature. MMIR is presented as the organic complex of the systems of Text Retrieval, Visual Retrieval, Video Retrieval, and Audio Retrieval, each of which has an approach to information management that handles the concrete textual, visual, audio, or video content of the documents directly, here defined as content-based. In conclusion, the limits of this content-based objective access to documents is underlined. The discrepancy known as the semantic gap is that which occurs between semantic-interpretive access and content-based access. Finally, the integration of these conceptions is explained, gathering and composing the merits and the advantages of each of the approaches and of the systems to access to information.
    Date
    22. 1.2012 13:02:10
    Source
    Knowledge organization. 39(2012) no.1, S.13-22
  4. Hoover, L.: ¬A beginners' guide for subject analysis of theses and dissertations in the hard sciences (2005) 0.02
    0.017743612 = product of:
      0.053230833 = sum of:
        0.053230833 = weight(_text_:resources in 5740) [ClassicSimilarity], result of:
          0.053230833 = score(doc=5740,freq=4.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.28518265 = fieldWeight in 5740, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5740)
      0.33333334 = coord(1/3)
    
    Abstract
    This guide, for beginning catalogers with humanities or social sciences backgrounds, provides assistance in subject analysis (based on Library of Congress Subject Headings) of theses and dissertations (T/Ds) that are produced by graduate students in university departments in the hard sciences (physical sciences and engineering). It is aimed at those who have had little or no experience in cataloging, especially of this type of material, and for those who desire to supplement local mentoring resources for subject analysis in the hard sciences. Theses and dissertations from these departments present a special challenge because they are the results of current research representing specific new concepts with which the cataloger may not be familiar. In fact, subject headings often have not yet been created for the specific concept(s) being researched. Additionally, T/D authors often use jargon/terminology specific to their department. Catalogers often have many other duties in addition to subject analysis of T/Ds in the hard sciences, yet they desire to provide optimal access through accurate, thorough subject analysis. Tips are provided for determining the content of the T/D, strategic searches on WorldCat for possible subject headings, evaluating the relevancy of these subject headings for final selection, and selecting appropriate subdivisions where needed. Lists of basic reference resources are also provided.
  5. Buckland, M.; Shaw, R.: 4W vocabulary mapping across diiverse reference genres (2008) 0.02
    0.015055953 = product of:
      0.045167856 = sum of:
        0.045167856 = weight(_text_:resources in 2258) [ClassicSimilarity], result of:
          0.045167856 = score(doc=2258,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 2258, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=2258)
      0.33333334 = coord(1/3)
    
    Content
    This paper examines three themes in the design of search support services: linking different genres of reference resources (e.g. bibliographies, biographical dictionaries, catalogs, encyclopedias, place name gazetteers); the division of vocabularies by facet (e.g. What, Where, When, and Who); and mapping between both similar and dissimilar vocabularies. Different vocabularies within a facet can be used in conjunction, e.g. a place name combined with spatial coordinates for Where. In practice, vocabularies of different facets are used in combination in the representation or description of complex topics. Rich opportunities arise from mapping across vocabularies of dissimilar reference genres to recreate the amenities of a reference library. In a network environment, in which vocabulary control cannot be imposed, semantic correspondence across diverse vocabularies is a challenge and an opportunity.
  6. Bade, D.: ¬The creation and persistence of misinformation in shared library catalogs : language and subject knowledge in a technological era (2002) 0.01
    0.014655909 = product of:
      0.021983862 = sum of:
        0.015055953 = weight(_text_:resources in 1858) [ClassicSimilarity], result of:
          0.015055953 = score(doc=1858,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.08066183 = fieldWeight in 1858, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.015625 = fieldNorm(doc=1858)
        0.0069279084 = product of:
          0.013855817 = sum of:
            0.013855817 = weight(_text_:22 in 1858) [ClassicSimilarity], result of:
              0.013855817 = score(doc=1858,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.07738023 = fieldWeight in 1858, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1858)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    22. 9.1997 19:16:05
    Footnote
    Rez. in JASIST 54(2003) no.4, S.356-357 (S.J. Lincicum): "Reliance upon shared cataloging in academic libraries in the United States has been driven largely by the need to reduce the expense of cataloging operations without muck regard for the Impact that this approach might have an the quality of the records included in local catalogs. In recent years, ever increasing pressures have prompted libraries to adopt practices such as "rapid" copy cataloging that purposely reduce the scrutiny applied to bibliographic records downloaded from shared databases, possibly increasing the number of errors that slip through unnoticed. Errors in bibliographic records can lead to serious problems for library catalog users. If the data contained in bibliographic records is inaccurate, users will have difficulty discovering and recognizing resources in a library's collection that are relevant to their needs. Thus, it has become increasingly important to understand the extent and nature of errors that occur in the records found in large shared bibliographic databases, such as OCLC WorldCat, to develop cataloging practices optimized for the shared cataloging environment. Although this monograph raises a few legitimate concerns about recent trends in cataloging practice, it fails to provide the "detailed look" at misinformation in library catalogs arising from linguistic errors and mistakes in subject analysis promised by the publisher. A basic premise advanced throughout the text is that a certain amount of linguistic and subject knowledge is required to catalog library materials effectively. The author emphasizes repeatedly that most catalogers today are asked to catalog an increasingly diverse array of materials, and that they are often required to work in languages or subject areas of which they have little or no knowledge. He argues that the records contributed to shared databases are increasingly being created by catalogers with inadequate linguistic or subject expertise. This adversely affects the quality of individual library catalogs because errors often go uncorrected as records are downloaded from shared databases to local catalogs by copy catalogers who possess even less knowledge. Calling misinformation an "evil phenomenon," Bade states that his main goal is to discuss, "two fundamental types of misinformation found in bibliographic and authority records in library catalogs: that arising from linguistic errors, and that caused by errors in subject analysis, including missing or wrong subject headings" (p. 2). After a superficial discussion of "other" types of errors that can occur in bibliographic records, such as typographical errors and errors in the application of descriptive cataloging rules, Bade begins his discussion of linguistic errors. He asserts that sharing bibliographic records created by catalogers with inadequate linguistic or subject knowledge has, "disastrous effects an the library community" (p. 6). To support this bold assertion, Bade provides as evidence little more than a laundry list of errors that he has personally observed in bibliographic records over the years. When he eventually cites several studies that have addressed the availability and quality of records available for materials in languages other than English, he fails to describe the findings of these studies in any detail, let alone relate the findings to his own observations in a meaningful way. Bade claims that a lack of linguistic expertise among catalogers is the "primary source for linguistic misinformation in our databases" (p. 10), but he neither cites substantive data from existing studies nor provides any new data regarding the overall level of linguistic knowledge among catalogers to support this claim. The section concludes with a brief list of eight sensible, if unoriginal, suggestions for coping with the challenge of cataloging materials in unfamiliar languages.
  7. Pejtersen, A.M.: Design of a classification scheme for fiction based on an analysis of actual user-librarian communication, and use of the scheme for control of librarians' search strategies (1980) 0.01
    0.011546515 = product of:
      0.034639545 = sum of:
        0.034639545 = product of:
          0.06927909 = sum of:
            0.06927909 = weight(_text_:22 in 5835) [ClassicSimilarity], result of:
              0.06927909 = score(doc=5835,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.38690117 = fieldWeight in 5835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5835)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 8.2006 13:22:44
  8. Beghtol, C.: Toward a theory of fiction analysis for information storage and retrieval (1992) 0.01
    0.009237211 = product of:
      0.027711634 = sum of:
        0.027711634 = product of:
          0.055423267 = sum of:
            0.055423267 = weight(_text_:22 in 5830) [ClassicSimilarity], result of:
              0.055423267 = score(doc=5830,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.30952093 = fieldWeight in 5830, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5830)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 8.2006 13:22:08
  9. Hauff-Hartig, S.: Automatische Transkription von Videos : Fernsehen 3.0: Automatisierte Sentimentanalyse und Zusammenstellung von Kurzvideos mit hohem Aufregungslevel KI-generierte Metadaten: Von der Technologiebeobachtung bis zum produktiven Einsatz (2021) 0.01
    0.009237211 = product of:
      0.027711634 = sum of:
        0.027711634 = product of:
          0.055423267 = sum of:
            0.055423267 = weight(_text_:22 in 251) [ClassicSimilarity], result of:
              0.055423267 = score(doc=251,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.30952093 = fieldWeight in 251, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=251)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 5.2021 12:43:05
  10. Rowe, N.C.: Inferring depictions in natural-language captions for efficient access to picture data (1994) 0.01
    0.0074881846 = product of:
      0.022464553 = sum of:
        0.022464553 = product of:
          0.044929106 = sum of:
            0.044929106 = weight(_text_:management in 7296) [ClassicSimilarity], result of:
              0.044929106 = score(doc=7296,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2606825 = fieldWeight in 7296, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7296)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 30(1994) no.3, S.379-388
  11. Morehead, D.R.; Pejtersen, A.M.; Rouse, W.B.: ¬The value of information and computer-aided information seeking : problem formulation and application to fiction retrieval (1984) 0.01
    0.0074881846 = product of:
      0.022464553 = sum of:
        0.022464553 = product of:
          0.044929106 = sum of:
            0.044929106 = weight(_text_:management in 5828) [ClassicSimilarity], result of:
              0.044929106 = score(doc=5828,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2606825 = fieldWeight in 5828, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5828)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 20(1984), S.583-601
  12. Mai, J.-E.: Analysis in indexing : document and domain centered approaches (2005) 0.01
    0.0074881846 = product of:
      0.022464553 = sum of:
        0.022464553 = product of:
          0.044929106 = sum of:
            0.044929106 = weight(_text_:management in 1024) [ClassicSimilarity], result of:
              0.044929106 = score(doc=1024,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2606825 = fieldWeight in 1024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1024)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 41(2005) no.3, S.599-611
  13. Weimer, K.H.: ¬The nexus of subject analysis and bibliographic description : the case of multipart videos (1996) 0.01
    0.0069279084 = product of:
      0.020783724 = sum of:
        0.020783724 = product of:
          0.04156745 = sum of:
            0.04156745 = weight(_text_:22 in 6525) [ClassicSimilarity], result of:
              0.04156745 = score(doc=6525,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.23214069 = fieldWeight in 6525, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6525)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Cataloging and classification quarterly. 22(1996) no.2, S.5-18
  14. Chen, S.-J.; Lee, H.-L.: Art images and mental associations : a preliminary exploration (2014) 0.01
    0.0069279084 = product of:
      0.020783724 = sum of:
        0.020783724 = product of:
          0.04156745 = sum of:
            0.04156745 = weight(_text_:22 in 1416) [ClassicSimilarity], result of:
              0.04156745 = score(doc=1416,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.23214069 = fieldWeight in 1416, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1416)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  15. White, M.D.; Marsh, E.E.: Content analysis : a flexible methodology (2006) 0.01
    0.0069279084 = product of:
      0.020783724 = sum of:
        0.020783724 = product of:
          0.04156745 = sum of:
            0.04156745 = weight(_text_:22 in 5589) [ClassicSimilarity], result of:
              0.04156745 = score(doc=5589,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.23214069 = fieldWeight in 5589, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5589)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Library trends. 55(2006) no.1, S.22-45
  16. Amac, T.: Linguistic context analysis : a new approach to communication evaluation (1997) 0.01
    0.0064184438 = product of:
      0.01925533 = sum of:
        0.01925533 = product of:
          0.03851066 = sum of:
            0.03851066 = weight(_text_:management in 2576) [ClassicSimilarity], result of:
              0.03851066 = score(doc=2576,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.22344214 = fieldWeight in 2576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2576)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Argues that the integration of computational psycholinguistics can improve corporate communication, and thus become a new strategic tool. An electronic dictionary was created of basic, neutral and negative connotations for nouns, verbs and adjectives appearing in press releases and other communication media, which can be updated with client specific words. The focus on negative messages has the objective of detecting who, why and how publics are criticized, to learn from the vocabulary of opinion leaders and to improve issues management proactively. Suggests a new form of analysis called 'computational linguistic context analysis' (CLCA) by analyzing nominal groups of negative words, rather than monitoring content analysis in the traditional way. Concludes that CLCA can be used to analyze large quantities of press cuttings about a company and could, theoretically, be used to analyze the structure, language and style of a particular journalist to whom it is planned to send a press release or article
  17. Rorissa, A.: User-generated descriptions of individual images versus labels of groups of images : a comparison using basic level theory (2008) 0.01
    0.005348703 = product of:
      0.016046109 = sum of:
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 2122) [ClassicSimilarity], result of:
              0.032092217 = score(doc=2122,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 2122, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2122)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 44(2008) no.5, S.1741-1753
  18. Saif, H.; He, Y.; Fernandez, M.; Alani, H.: Contextual semantics for sentiment analysis of Twitter (2016) 0.01
    0.005348703 = product of:
      0.016046109 = sum of:
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 2667) [ClassicSimilarity], result of:
              0.032092217 = score(doc=2667,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 2667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2667)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 52(2016) no.1, S.5-19
  19. Sauperl, A.: Subject determination during the cataloging process : the development of a system based on theoretical principles (2002) 0.00
    0.0034639542 = product of:
      0.010391862 = sum of:
        0.010391862 = product of:
          0.020783724 = sum of:
            0.020783724 = weight(_text_:22 in 2293) [ClassicSimilarity], result of:
              0.020783724 = score(doc=2293,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.116070345 = fieldWeight in 2293, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2293)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    27. 9.2005 14:22:19