Search (4 results, page 1 of 1)

  • × type_ss:"el"
  • × theme_ss:"Information"
  1. Atran, S.; Medin, D.L.; Ross, N.: Evolution and devolution of knowledge : a tale of two biologies (2004) 0.03
    0.026692703 = product of:
      0.08007811 = sum of:
        0.08007811 = sum of:
          0.03851066 = weight(_text_:management in 479) [ClassicSimilarity], result of:
            0.03851066 = score(doc=479,freq=2.0), product of:
              0.17235184 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.051133685 = queryNorm
              0.22344214 = fieldWeight in 479, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046875 = fieldNorm(doc=479)
          0.04156745 = weight(_text_:22 in 479) [ClassicSimilarity], result of:
            0.04156745 = score(doc=479,freq=2.0), product of:
              0.17906146 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051133685 = queryNorm
              0.23214069 = fieldWeight in 479, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=479)
      0.33333334 = coord(1/3)
    
    Abstract
    Anthropological inquiry suggests that all societies classify animals and plants in similar ways. Paradoxically, in the same cultures that have seen large advances in biological science, citizenry's practical knowledge of nature has dramatically diminished. Here we describe historical, cross-cultural and developmental research on how people ordinarily conceptualize organic nature (folkbiology), concentrating on cognitive consequences associated with knowledge devolution. We show that results on psychological studies of categorization and reasoning from "standard populations" fail to generalize to humanity at large. Usual populations (Euro-American college students) have impoverished experience with nature, which yields misleading results about knowledge acquisition and the ontogenetic relationship between folkbiology and folkpsychology. We also show that groups living in the same habitat can manifest strikingly distinct behaviors, cognitions and social relations relative to it. This has novel implications for environmental decision making and management, including commons problems.
    Date
    23. 1.2022 10:22:18
  2. Crane, G.; Jones, A.: Text, information, knowledge and the evolving record of humanity (2006) 0.01
    0.010865699 = product of:
      0.032597095 = sum of:
        0.032597095 = weight(_text_:resources in 1182) [ClassicSimilarity], result of:
          0.032597095 = score(doc=1182,freq=6.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.174638 = fieldWeight in 1182, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1182)
      0.33333334 = coord(1/3)
    
    Abstract
    Consider a sentence such as "the current price of tea in China is 35 cents per pound." In a library with millions of books we might find many statements of the above form that we could capture today with relatively simple rules: rather than pursuing every variation of a statement, programs can wait, like predators at a water hole, for their informational prey to reappear in a standard linguistic pattern. We can make inferences from sentences such as "NAME1 born at NAME2 in DATE" that NAME more likely than not represents a person and NAME a place and then convert the statement into a proposition about a person born at a given place and time. The changing price of tea in China, pedestrian birth and death dates, or other basic statements may not be truth and beauty in the Phaedrus, but a digital library that could plot the prices of various commodities in different markets over time, plot the various lifetimes of individuals, or extract and classify many events would be very useful. Services such as the Syllabus Finder1 and H-Bot2 (which Dan Cohen describes elsewhere in this issue of D-Lib) represent examples of information extraction already in use. H-Bot, in particular, builds on our evolving ability to extract information from very large corpora such as the billions of web pages available through the Google API. Aside from identifying higher order statements, however, users also want to search and browse named entities: they want to read about "C. P. E. Bach" rather than his father "Johann Sebastian" or about "Cambridge, Maryland", without hearing about "Cambridge, Massachusetts", Cambridge in the UK or any of the other Cambridges scattered around the world. Named entity identification is a well-established area with an ongoing literature. The Natural Language Processing Research Group at the University of Sheffield has developed its open source Generalized Architecture for Text Engineering (GATE) for years, while IBM's Unstructured Information Analysis and Search (UIMA) is "available as open source software to provide a common foundation for industry and academia." Powerful tools are thus freely available and more demanding users can draw upon published literature to develop their own systems. Major search engines such as Google and Yahoo also integrate increasingly sophisticated tools to categorize and identify places. The software resources are rich and expanding. The reference works on which these systems depend, however, are ill-suited for historical analysis. First, simple gazetteers and similar authority lists quickly grow too big for useful information extraction. They provide us with potential entities against which to match textual references, but existing electronic reference works assume that human readers can use their knowledge of geography and of the immediate context to pick the right Boston from the Bostons in the Getty Thesaurus of Geographic Names (TGN), but, with the crucial exception of geographic location, the TGN records do not provide any machine readable clues: we cannot tell which Bostons are large or small. If we are analyzing a document published in 1818, we cannot filter out those places that did not yet exist or that had different names: "Jefferson Davis" is not the name of a parish in Louisiana (tgn,2000880) or a county in Mississippi (tgn,2001118) until after the Civil War.
    Although the Alexandria Digital Library provides far richer data than the TGN (5.9 vs. 1.3 million names), its added size lowers, rather than increases, the accuracy of most geographic name identification systems for historical documents: most of the extra 4.6 million names cover low frequency entities that rarely occur in any particular corpus. The TGN is sufficiently comprehensive to provide quite enough noise: we find place names that are used over and over (there are almost one hundred Washingtons) and semantically ambiguous (e.g., is Washington a person or a place?). Comprehensive knowledge sources emphasize recall but lower precision. We need data with which to determine which "Tribune" or "John Brown" a particular passage denotes. Secondly and paradoxically, our reference works may not be comprehensive enough. Human actors come and go over time. Organizations appear and vanish. Even places can change their names or vanish. The TGN does associate the obsolete name Siam with the nation of Thailand (tgn,1000142) - but also with towns named Siam in Iowa (tgn,2035651), Tennessee (tgn,2101519), and Ohio (tgn,2662003). Prussia appears but as a general region (tgn,7016786), with no indication when or if it was a sovereign nation. And if places do point to the same object over time, that object may have very different significance over time: in the foundational works of Western historiography, Herodotus reminds us that the great cities of the past may be small today, and the small cities of today great tomorrow (Hdt. 1.5), while Thucydides stresses that we cannot estimate the past significance of a place by its appearance today (Thuc. 1.10). In other words, we need to know the population figures for the various Washingtons in 1870 if we are analyzing documents from 1870. The foundations have been laid for reference works that provide machine actionable information about entities at particular times in history. The Alexandria Digital Library Gazetteer Content Standard8 represents a sophisticated framework with which to create such resources: places can be associated with temporal information about their foundation (e.g., Washington, DC, founded on 16 July 1790), changes in names for the same location (e.g., Saint Petersburg to Leningrad and back again), population figures at various times and similar historically contingent data. But if we have the software and the data structures, we do not yet have substantial amounts of historical content such as plentiful digital gazetteers, encyclopedias, lexica, grammars and other reference works to illustrate many periods and, even if we do, those resources may not be in a useful form: raw OCR output of a complex lexicon or gazetteer may have so many errors and have captured so little of the underlying structure that the digital resource is useless as a knowledge base. Put another way, human beings are still much better at reading and interpreting the contents of page images than machines. While people, places, and dates are probably the most important core entities, we will find a growing set of objects that we need to identify and track across collections, and each of these categories of objects will require its own knowledge sources. The following section enumerates and briefly describes some existing categories of documents that we need to mine for knowledge. This brief survey focuses on the format of print sources (e.g., highly structured textual "database" vs. unstructured text) to illustrate some of the challenges involved in converting our published knowledge into semantically annotated, machine actionable form.
  3. Allo, P.; Baumgaertner, B.; D'Alfonso, S.; Fresco, N.; Gobbo, F.; Grubaugh, C.; Iliadis, A.; Illari, P.; Kerr, E.; Primiero, G.; Russo, F.; Schulz, C.; Taddeo, M.; Turilli, M.; Vakarelov, O.; Zenil, H.: ¬The philosophy of information : an introduction (2013) 0.01
    0.0075279763 = product of:
      0.022583928 = sum of:
        0.022583928 = weight(_text_:resources in 3380) [ClassicSimilarity], result of:
          0.022583928 = score(doc=3380,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.12099275 = fieldWeight in 3380, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3380)
      0.33333334 = coord(1/3)
    
    Abstract
    In April 2010, Bill Gates gave a talk at MIT in which he asked: 'are the brightest minds working on the most important problems?' Gates meant improving the lives of the poorest; improving education, health, and nutrition. We could easily add improving peaceful interactions, human rights, environmental conditions, living standards and so on. Philosophy of Information (PI) proponents think that Gates has a point - but this doesn't mean we should all give up philosophy. Philosophy can be part of this project, because philosophy understood as conceptual design forges and refines the new ideas, theories, and perspectives that we need to understand and address these important problems that press us so urgently. Of course, this naturally invites us to wonder which ideas, theories, and perspectives philosophers should be designing now. In our global information society, many crucial challenges are linked to information and communication technologies: the constant search for novel solutions and improvements demands, in turn, changing conceptual resources to understand and cope with them. Rapid technological development now pervades communication, education, work, entertainment, industrial production and business, healthcare, social relations and armed conflicts. There is a rich mine of philosophical work to do on the new concepts created right here, right now.
  4. Freyberg, L.: ¬Die Lesbarkeit der Welt : Rezension zu 'The Concept of Information in Library and Information Science. A Field in Search of Its Boundaries: 8 Short Comments Concerning Information'. In: Cybernetics and Human Knowing. Vol. 22 (2015), 1, 57-80. Kurzartikel von Luciano Floridi, Søren Brier, Torkild Thellefsen, Martin Thellefsen, Bent Sørensen, Birger Hjørland, Brenda Dervin, Ken Herold, Per Hasle und Michael Buckland (2016) 0.00
    0.0046186056 = product of:
      0.013855817 = sum of:
        0.013855817 = product of:
          0.027711634 = sum of:
            0.027711634 = weight(_text_:22 in 3335) [ClassicSimilarity], result of:
              0.027711634 = score(doc=3335,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.15476047 = fieldWeight in 3335, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3335)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)