Search (5 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Inhaltsanalyse"
  1. Xie, H.; Li, X.; Wang, T.; Lau, R.Y.K.; Wong, T.-L.; Chen, L.; Wang, F.L.; Li, Q.: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy (2016) 0.04
    0.04332816 = product of:
      0.064992234 = sum of:
        0.05215535 = weight(_text_:resources in 2671) [ClassicSimilarity], result of:
          0.05215535 = score(doc=2671,freq=6.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2794208 = fieldWeight in 2671, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.03125 = fieldNorm(doc=2671)
        0.0128368875 = product of:
          0.025673775 = sum of:
            0.025673775 = weight(_text_:management in 2671) [ClassicSimilarity], result of:
              0.025673775 = score(doc=2671,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.14896142 = fieldWeight in 2671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2671)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In recent years, there has been a rapid growth of user-generated data in collaborative tagging (a.k.a. folksonomy-based) systems due to the prevailing of Web 2.0 communities. To effectively assist users to find their desired resources, it is critical to understand user behaviors and preferences. Tag-based profile techniques, which model users and resources by a vector of relevant tags, are widely employed in folksonomy-based systems. This is mainly because that personalized search and recommendations can be facilitated by measuring relevance between user profiles and resource profiles. However, conventional measurements neglect the sentiment aspect of user-generated tags. In fact, tags can be very emotional and subjective, as users usually express their perceptions and feelings about the resources by tags. Therefore, it is necessary to take sentiment relevance into account into measurements. In this paper, we present a novel generic framework SenticRank to incorporate various sentiment information to various sentiment-based information for personalized search by user profiles and resource profiles. In this framework, content-based sentiment ranking and collaborative sentiment ranking methods are proposed to obtain sentiment-based personalized ranking. To the best of our knowledge, this is the first work of integrating sentiment information to address the problem of the personalized tag-based search in collaborative tagging systems. Moreover, we compare the proposed sentiment-based personalized search with baselines in the experiments, the results of which have verified the effectiveness of the proposed framework. In addition, we study the influences by popular sentiment dictionaries, and SenticNet is the most prominent knowledge base to boost the performance of personalized search in folksonomy.
    Source
    Information processing and management. 52(2016) no.1, S.61-72
  2. Bertola, F.; Patti, V.: Ontology-based affective models to organize artworks in the social semantic web (2016) 0.04
    0.035790663 = product of:
      0.053685993 = sum of:
        0.037639882 = weight(_text_:resources in 2669) [ClassicSimilarity], result of:
          0.037639882 = score(doc=2669,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.20165458 = fieldWeight in 2669, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2669)
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 2669) [ClassicSimilarity], result of:
              0.032092217 = score(doc=2669,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 2669, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2669)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this paper, we focus on applying sentiment analysis to resources from online art collections, by exploiting, as information source, tags intended as textual traces that visitors leave to comment artworks on social platforms. We present a framework where methods and tools from a set of disciplines, ranging from Semantic and Social Web to Natural Language Processing, provide us the building blocks for creating a semantic social space to organize artworks according to an ontology of emotions. The ontology is inspired by the Plutchik's circumplex model, a well-founded psychological model of human emotions. Users can be involved in the creation of the emotional space, through a graphical interactive interface. The development of such semantic space enables new ways of accessing and exploring art collections. The affective categorization model and the emotion detection output are encoded into W3C ontology languages. This gives us the twofold advantage to enable tractable reasoning on detected emotions and related artworks, and to foster the interoperability and integration of tools developed in the Semantic Web and Linked Data community. The proposal has been evaluated against a real-word case study, a dataset of tagged multimedia artworks from the ArsMeteo Italian online collection, and validated through a user study.
    Source
    Information processing and management. 52(2016) no.1, S.139-162
  3. Raieli, R.: ¬The semantic hole : enthusiasm and caution around multimedia information retrieval (2012) 0.03
    0.031457655 = product of:
      0.094372965 = sum of:
        0.094372965 = sum of:
          0.045385253 = weight(_text_:management in 4888) [ClassicSimilarity], result of:
            0.045385253 = score(doc=4888,freq=4.0), product of:
              0.17235184 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.051133685 = queryNorm
              0.2633291 = fieldWeight in 4888, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4888)
          0.048987713 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
            0.048987713 = score(doc=4888,freq=4.0), product of:
              0.17906146 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051133685 = queryNorm
              0.27358043 = fieldWeight in 4888, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4888)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper centres on the tools for the management of new digital documents, which are not only textual, but also visual-video, audio or multimedia in the full sense. Among the aims is to demonstrate that operating within the terms of generic Information Retrieval through textual language only is limiting, and it is instead necessary to consider ampler criteria, such as those of MultiMedia Information Retrieval, according to which, every type of digital document can be analyzed and searched by the proper elements of language for its proper nature. MMIR is presented as the organic complex of the systems of Text Retrieval, Visual Retrieval, Video Retrieval, and Audio Retrieval, each of which has an approach to information management that handles the concrete textual, visual, audio, or video content of the documents directly, here defined as content-based. In conclusion, the limits of this content-based objective access to documents is underlined. The discrepancy known as the semantic gap is that which occurs between semantic-interpretive access and content-based access. Finally, the integration of these conceptions is explained, gathering and composing the merits and the advantages of each of the approaches and of the systems to access to information.
    Date
    22. 1.2012 13:02:10
    Source
    Knowledge organization. 39(2012) no.1, S.13-22
  4. Chen, S.-J.; Lee, H.-L.: Art images and mental associations : a preliminary exploration (2014) 0.01
    0.0069279084 = product of:
      0.020783724 = sum of:
        0.020783724 = product of:
          0.04156745 = sum of:
            0.04156745 = weight(_text_:22 in 1416) [ClassicSimilarity], result of:
              0.04156745 = score(doc=1416,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.23214069 = fieldWeight in 1416, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1416)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  5. Saif, H.; He, Y.; Fernandez, M.; Alani, H.: Contextual semantics for sentiment analysis of Twitter (2016) 0.01
    0.005348703 = product of:
      0.016046109 = sum of:
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 2667) [ClassicSimilarity], result of:
              0.032092217 = score(doc=2667,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 2667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2667)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 52(2016) no.1, S.5-19