Search (57 results, page 1 of 3)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.04
    0.043227583 = product of:
      0.08645517 = sum of:
        0.08645517 = sum of:
          0.036943786 = weight(_text_:retrieval in 1149) [ClassicSimilarity], result of:
            0.036943786 = score(doc=1149,freq=2.0), product of:
              0.15791564 = queryWeight, product of:
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.052204985 = queryNorm
              0.23394634 = fieldWeight in 1149, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1149)
          0.04951138 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
            0.04951138 = score(doc=1149,freq=2.0), product of:
              0.18281296 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052204985 = queryNorm
              0.2708308 = fieldWeight in 1149, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1149)
      0.5 = coord(1/2)
    
    Abstract
    A thesaurus in the controlled vocabulary environment is a tool designed to support effective infonnation retrieval (IR) by guiding indexers and searchers consistently to choose the same terms for expressing a given concept or combination of concepts. Terms in the thesaurus are linked by relationships of three well-known types: equivalence, hierarchical, and associative. The functions and properties of these three basic types and some subcategories are described, as well as some additional relationship types conunonly found in thesauri. Progressive automation of IR processes and the capability for simultaneous searching of vast networked resources are creating some pressures for change in the categorization and consistency of relationships.
    Date
    22. 9.2007 15:45:57
  2. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.04
    0.043227583 = product of:
      0.08645517 = sum of:
        0.08645517 = sum of:
          0.036943786 = weight(_text_:retrieval in 4792) [ClassicSimilarity], result of:
            0.036943786 = score(doc=4792,freq=2.0), product of:
              0.15791564 = queryWeight, product of:
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.052204985 = queryNorm
              0.23394634 = fieldWeight in 4792, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4792)
          0.04951138 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
            0.04951138 = score(doc=4792,freq=2.0), product of:
              0.18281296 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052204985 = queryNorm
              0.2708308 = fieldWeight in 4792, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4792)
      0.5 = coord(1/2)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. In Form einer Taxonomie wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, die eine detaillierte und damit aussagekräftige Relationierung des Vokabulars ermöglichen. Das bringt einen Zugewinn an Übersichtlichkeit und Funktionalität. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines bestehenden Gegenstandsbereichs heraus.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  3. Maniez, J.: Fusion de banques de donnees documentaires at compatibilite des languages d'indexation (1997) 0.04
    0.037052214 = product of:
      0.07410443 = sum of:
        0.07410443 = sum of:
          0.0316661 = weight(_text_:retrieval in 2246) [ClassicSimilarity], result of:
            0.0316661 = score(doc=2246,freq=2.0), product of:
              0.15791564 = queryWeight, product of:
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.052204985 = queryNorm
              0.20052543 = fieldWeight in 2246, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.046875 = fieldNorm(doc=2246)
          0.04243833 = weight(_text_:22 in 2246) [ClassicSimilarity], result of:
            0.04243833 = score(doc=2246,freq=2.0), product of:
              0.18281296 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052204985 = queryNorm
              0.23214069 = fieldWeight in 2246, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2246)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the apparently unattainable goal of compatibility of information languages. While controlled languages can improve retrieval performance within a single system, they make cooperation across different systems more difficult. The Internet and downloading accentuate this adverse outcome and the acceleration of data exchange aggravates the problem of compatibility. Defines this familiar concept and demonstrates that coherence is just as necessary as it was for indexing languages, the proliferation of which has created confusion in grouped data banks. Describes 2 types of potential solutions, similar to those applied to automatic translation of natural languages: - harmonizing the information languages themselves, both difficult and expensive, or, the more flexible solution involving automatic harmonization of indexing formulae based on pre established concordance tables. However, structural incompatibilities between post coordinated languages and classifications may lead any harmonization tools up a blind alley, while the paths of a universal concordance model are rare and narrow
    Date
    1. 8.1996 22:01:00
  4. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.03
    0.028374974 = product of:
      0.056749947 = sum of:
        0.056749947 = sum of:
          0.031994257 = weight(_text_:retrieval in 3644) [ClassicSimilarity], result of:
            0.031994257 = score(doc=3644,freq=6.0), product of:
              0.15791564 = queryWeight, product of:
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.052204985 = queryNorm
              0.20260347 = fieldWeight in 3644, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
          0.02475569 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
            0.02475569 = score(doc=3644,freq=2.0), product of:
              0.18281296 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052204985 = queryNorm
              0.1354154 = fieldWeight in 3644, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
      0.5 = coord(1/2)
    
    Abstract
    Calvin Mooers' work toward the resolution of the problem of ambiguity in indexing went unrecognized for years. At the time he introduced the "descriptor" - a term with a very distinct meaning-indexers were, for the most part, taking index terms directly from the document, without either rationalizing them with context or normalizing them with some kind of classification. It is ironic that Mooers' term came to be attached to the popular but unsophisticated indexing methods which he was trying to root out. Simply expressed, what Mooers did was to take the dictionary definitions of terms and redefine them so clearly that they could not be used in any context except that provided by the new definition. He did, at great pains, construct such meanings for over four hundred words; disambiguation and specificity were sought after and found for these words. He proposed that all indexers adopt this method so that when the index supplied a term, it also supplied the exact meaning for that term as used in the indexed document. The same term used differently in another document would be defined differently and possibly renamed to avoid ambiguity. The disambiguation was achieved by using unabridged dictionaries and other sources of defining terminology. In practice, this tends to produce circularity in definition, that is, word A refers to word B which refers to word C which refers to word A. It was necessary, therefore, to break this chain by creating a new, definitive meaning for each word. Eventually, means such as those used by Austin (q.v.) for PRECIS achieved the same purpose, but by much more complex means than just creating a unique definition of each term. Mooers, however, was probably the first to realize how confusing undefined terminology could be. Early automatic indexers dealt with distinct disciplines and, as long as they did not stray beyond disciplinary boundaries, a quick and dirty keyword approach was satisfactory. The trouble came when attempts were made to make a combined index for two or more distinct disciplines. A number of processes have since been developed, mostly involving tagging of some kind or use of strings. Mooers' solution has rarely been considered seriously and probably would be extremely difficult to apply now because of so much interdisciplinarity. But for a specific, weIl defined field, it is still weIl worth considering. Mooers received training in mathematics and physics from the University of Minnesota and the Massachusetts Institute of Technology. He was the founder of Zator Company, which developed and marketed a coded card information retrieval system, and of Rockford Research, Inc., which engages in research in information science. He is the inventor of the TRAC computer language.
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.
  5. Farradane, J.: Concept organization for information retrieval (1967) 0.03
    0.0261232 = product of:
      0.0522464 = sum of:
        0.0522464 = product of:
          0.1044928 = sum of:
            0.1044928 = weight(_text_:retrieval in 35) [ClassicSimilarity], result of:
              0.1044928 = score(doc=35,freq=4.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.6617001 = fieldWeight in 35, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=35)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Information storage and retrieval. 3(1967) S.297-314
  6. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.02
    0.02475569 = product of:
      0.04951138 = sum of:
        0.04951138 = product of:
          0.09902276 = sum of:
            0.09902276 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
              0.09902276 = score(doc=4506,freq=2.0), product of:
                0.18281296 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052204985 = queryNorm
                0.5416616 = fieldWeight in 4506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    8.10.2000 11:52:22
  7. Fox, E.A.: Lexical relations : enhancing effectiveness of information retrieval systems (1980) 0.02
    0.021110734 = product of:
      0.042221468 = sum of:
        0.042221468 = product of:
          0.084442936 = sum of:
            0.084442936 = weight(_text_:retrieval in 5310) [ClassicSimilarity], result of:
              0.084442936 = score(doc=5310,freq=2.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.5347345 = fieldWeight in 5310, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.125 = fieldNorm(doc=5310)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  8. Mikacic, M.: Statistical system for subject designation (SSSD) for libraries in Croatia (1996) 0.02
    0.02000562 = product of:
      0.04001124 = sum of:
        0.04001124 = product of:
          0.08002248 = sum of:
            0.08002248 = weight(_text_:22 in 2943) [ClassicSimilarity], result of:
              0.08002248 = score(doc=2943,freq=4.0), product of:
                0.18281296 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052204985 = queryNorm
                0.4377287 = fieldWeight in 2943, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2943)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.2006 14:22:21
    Source
    Cataloging and classification quarterly. 22(1996) no.1, S.77-93
  9. Kobrin, R.Y.: On the principles of terminological work in the creation of thesauri for information retrieval systems (1979) 0.02
    0.018471893 = product of:
      0.036943786 = sum of:
        0.036943786 = product of:
          0.07388757 = sum of:
            0.07388757 = weight(_text_:retrieval in 2954) [ClassicSimilarity], result of:
              0.07388757 = score(doc=2954,freq=2.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.46789268 = fieldWeight in 2954, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2954)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  10. Salton, G.: Experiments in automatic thesaurus construction for information retrieval (1972) 0.02
    0.018471893 = product of:
      0.036943786 = sum of:
        0.036943786 = product of:
          0.07388757 = sum of:
            0.07388757 = weight(_text_:retrieval in 5314) [ClassicSimilarity], result of:
              0.07388757 = score(doc=5314,freq=2.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.46789268 = fieldWeight in 5314, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5314)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  11. Vickery, B.C.: Structure and function in retrieval languages (1971) 0.02
    0.018471893 = product of:
      0.036943786 = sum of:
        0.036943786 = product of:
          0.07388757 = sum of:
            0.07388757 = weight(_text_:retrieval in 4971) [ClassicSimilarity], result of:
              0.07388757 = score(doc=4971,freq=2.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.46789268 = fieldWeight in 4971, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4971)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  12. Takeda, N.: Problems in hierarchical structures in thesauri : their influences on the results of information retrieval (1994) 0.02
    0.018282432 = product of:
      0.036564864 = sum of:
        0.036564864 = product of:
          0.07312973 = sum of:
            0.07312973 = weight(_text_:retrieval in 2642) [ClassicSimilarity], result of:
              0.07312973 = score(doc=2642,freq=6.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.46309367 = fieldWeight in 2642, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2642)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In online retrieval search results do not always match the intent in spite of using correct keywords (descriptors). One of the causes of this problem is found in the hierarchical structures of the thesaurus, which often contains relations between broader and narrower concepts, the opposite of which is not necessarily true. Some examples are described from 2 thesauri, MeSH and JICST. In these cases searchers need to make an effort to increase precision
    Theme
    Verbale Doksprachen im Online-Retrieval
  13. Fugmann, R.: ¬The analytico-synthetic foundation for large indexing & information retrieval systems : dedicated to Prof. Dr. Werner Schultheis, the vigorous initiator of modern chem. documentation in Germany on the occasion of his 85th birthday (1983) 0.02
    0.018282432 = product of:
      0.036564864 = sum of:
        0.036564864 = product of:
          0.07312973 = sum of:
            0.07312973 = weight(_text_:retrieval in 215) [ClassicSimilarity], result of:
              0.07312973 = score(doc=215,freq=6.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.46309367 = fieldWeight in 215, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=215)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    LCSH
    Information retrieval
    Subject
    Information retrieval
  14. Evens, M.: Thesaural relations in information retrieval (2002) 0.02
    0.01770189 = product of:
      0.03540378 = sum of:
        0.03540378 = product of:
          0.07080756 = sum of:
            0.07080756 = weight(_text_:retrieval in 1201) [ClassicSimilarity], result of:
              0.07080756 = score(doc=1201,freq=10.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.44838852 = fieldWeight in 1201, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1201)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Thesaural relations have long been used in information retrieval to enrich queries; they have sometimes been used to cluster documents as well. Sometimes the first query to an information retrieval system yields no results at all, or, what can be even more disconcerting, many thousands of hits. One solution is to rephrase the query, improving the choice of query terms by using related terms of different types. A collection of related terms is often called a thesaurus. This chapter describes the lexical-semantic relations that have been used in building thesauri and summarizes some of the effects of using these relational thesauri in information retrieval experiments
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  15. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.02
    0.017682636 = product of:
      0.035365272 = sum of:
        0.035365272 = product of:
          0.070730545 = sum of:
            0.070730545 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.070730545 = score(doc=6089,freq=2.0), product of:
                0.18281296 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052204985 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.11-22
  16. Lopes, M.I.: Principles underlying subject heading languages : an international approach (1996) 0.02
    0.015997129 = product of:
      0.031994257 = sum of:
        0.031994257 = product of:
          0.063988514 = sum of:
            0.063988514 = weight(_text_:retrieval in 5608) [ClassicSimilarity], result of:
              0.063988514 = score(doc=5608,freq=6.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.40520695 = fieldWeight in 5608, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5608)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the problems in establishing commonly accepted principles for subject retrieval between different bibliographic systems. The Working Group on Principles Underlying Subject Heading Languages was established to devise general principles for any subject retrieval system and to review existing real systems in the light of such principles and compare them in order to evaluate the extent of their coverage and their application in current practices. Provides a background and history of the Working Group. Discusses the principles underlying subject headings and their purposes and the state of the work and major findings
    Theme
    Verbale Doksprachen im Online-Retrieval
  17. Miller, U.; Teitelbaum, R.: Pre-coordination and post-coordination : past and future (2002) 0.02
    0.015997129 = product of:
      0.031994257 = sum of:
        0.031994257 = product of:
          0.063988514 = sum of:
            0.063988514 = weight(_text_:retrieval in 1395) [ClassicSimilarity], result of:
              0.063988514 = score(doc=1395,freq=6.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.40520695 = fieldWeight in 1395, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1395)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article deals with the meaningful processing of information in relation to two systems of Information processing: pre-coordination and post-coordination. The different approaches are discussed, with emphasis an the need for a controlled vocabulary in information retrieval. Assigned indexing, which employs a controlled vocabulary, is described in detail. Types of indexing language can be divided into two broad groups - those using pre-coordinated terms and those depending an post-coordination. They represent two different basic approaches in processing and Information retrieval. The historical development of these two approaches is described, as well as the two tools that apply to these approaches: thesauri and subject headings.
    Theme
    Verbale Doksprachen im Online-Retrieval
  18. Maniez, J.: Actualité des langages documentaires : fondements théoriques de la recherche d'information (2002) 0.02
    0.01583305 = product of:
      0.0316661 = sum of:
        0.0316661 = product of:
          0.0633322 = sum of:
            0.0633322 = weight(_text_:retrieval in 887) [ClassicSimilarity], result of:
              0.0633322 = score(doc=887,freq=2.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.40105087 = fieldWeight in 887, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=887)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Übers. d. Titels: Actuality of information languages: theoretical foundation of information retrieval
  19. Vickery, B.B.: Structure and function in retrieval languages (2006) 0.02
    0.01583305 = product of:
      0.0316661 = sum of:
        0.0316661 = product of:
          0.0633322 = sum of:
            0.0633322 = weight(_text_:retrieval in 5584) [ClassicSimilarity], result of:
              0.0633322 = score(doc=5584,freq=8.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.40105087 = fieldWeight in 5584, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5584)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to summarize the varied structural characteristics which may be present in retrieval languages. Design/methodology/approach - The languages serve varied purposes in information systems, and a number of these are identified. The relations between structure and function are discussed and suggestions made as to the most suitable structures needed for various purposes. Findings - A quantitative approach has been developed: a simple measure is the number of separate terms in a retrieval language, but this has to be related to the scope of its subject field. Some ratio of terms to items in the field seems a more suitable measure of the average specificity of the terms. Other aspects can be quantified - for example, the average number of links in hierarchical chains, or the average number of cross-references in a thesaurus. Originality/value - All the approaches to the analysis of retrieval language reported in this paper are of continuing value. Some practical studies of computer information systems undertaken by Aslib Research Department have suggested a further approach.
  20. Tudhope, D.; Alani, H.; Jones, C.: Augmenting thesaurus relationships : possibilities for retrieval (2001) 0.01
    0.014751574 = product of:
      0.029503148 = sum of:
        0.029503148 = product of:
          0.059006296 = sum of:
            0.059006296 = weight(_text_:retrieval in 1520) [ClassicSimilarity], result of:
              0.059006296 = score(doc=1520,freq=10.0), product of:
                0.15791564 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.052204985 = queryNorm
                0.37365708 = fieldWeight in 1520, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1520)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses issues concerning the augmentation of thesaurus relationships, in light of new application possibilities for retrieval. We first discuss a case study that explored the retrieval potential of an augmented set of thesaurus relationships by specialising standard relationships into richer subtypes, in particular hierarchical geographical containment and the associative relationship. We then locate this work in a broader context by reviewing various attempts to build taxonomies of thesaurus relationships, and conclude by discussing the feasibility of hierarchically augmenting the core set of thesaurus relationships, particularly the associative relationship. We discuss the possibility of enriching the specification and semantics of Related Term (RT relationships), while maintaining compatibility with traditional thesauri via a limited hierarchical extension of the associative (and hierarchical) relationships. This would be facilitated by distinguishing the type of term from the (sub)type of relationship and explicitly specifying semantic categories for terms following a faceted approach. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but also the problem of uncontrolled expansion of query term sets. Results presented in this paper suggest the potential for taking account of the hierarchical context of an RT link and specialisations of the RT relationship
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval

Languages

  • e 47
  • d 5
  • f 3
  • ja 1
  • nl 1
  • More… Less…

Types

  • a 44
  • m 7
  • s 5
  • el 3
  • r 3
  • d 1
  • x 1
  • More… Less…