Search (13 results, page 1 of 1)

  • × author_ss:"Broughton, V."
  1. Broughton, V.: Henry Evelyn Bliss : the other immortal or a prophet without honour? (2008) 0.02
    0.023610573 = product of:
      0.047221147 = sum of:
        0.025068719 = weight(_text_:science in 2550) [ClassicSimilarity], result of:
          0.025068719 = score(doc=2550,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20372227 = fieldWeight in 2550, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2550)
        0.022152426 = product of:
          0.04430485 = sum of:
            0.04430485 = weight(_text_:22 in 2550) [ClassicSimilarity], result of:
              0.04430485 = score(doc=2550,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.2708308 = fieldWeight in 2550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2550)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    9. 2.1997 18:44:22
    Source
    Journal of librarianship and information science. 40(2008) no.1, S.45-58
  2. Broughton, V.: Essential Library of Congress Subject Headings (2009) 0.01
    0.009872664 = product of:
      0.039490655 = sum of:
        0.039490655 = product of:
          0.07898131 = sum of:
            0.07898131 = weight(_text_:history in 395) [ClassicSimilarity], result of:
              0.07898131 = score(doc=395,freq=4.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.3634361 = fieldWeight in 395, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=395)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    LCSH are increasingly seen as 'the' English language controlled vocabulary, despite their lack of a theoretical foundation, and their evident US bias. In mapping exercises between national subject heading lists, and in exercises in digital resource organization and management, LCSH are often chosen because of the lack of any other widely accepted English language standard for subject cataloguing. It is therefore important that the basic nature of LCSH, their advantages, and their limitations, are well understood both by LIS practitioners and those in the wider information community. Information professionals who attended library school before 1995 - and many more recent library school graduates - are unlikely to have had a formal introduction to LCSH. Paraprofessionals who undertake cataloguing are similarly unlikely to have enjoyed an induction to the broad principles of LCSH. There is currently no compact guide to LCSH written from a UK viewpoint, and this eminently practical text fills that gap. It features topics including: background and history of LCSH; subject heading lists; structure and display in LCSH; form of entry; application of LCSH; document analysis; main headings; topical, geographical and free-floating sub-divisions; building compound headings; name headings; headings for literature, art, music, history and law; and, LCSH in the online environment. There is a strong emphasis throughout on worked examples and practical exercises in the application of the scheme, and a full glossary of terms is supplied. No prior knowledge or experience of subject cataloguing is assumed. This is an indispensable guide to LCSH for practitioners and students alike from a well-known and popular author.
  3. Broughton, V.: Facet analysis : the evolution of an idea (2023) 0.01
    0.009773439 = product of:
      0.039093755 = sum of:
        0.039093755 = product of:
          0.07818751 = sum of:
            0.07818751 = weight(_text_:history in 1164) [ClassicSimilarity], result of:
              0.07818751 = score(doc=1164,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.3597834 = fieldWeight in 1164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1164)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Facets are widely encountered in information and knowledge organization, but there is much disparity in the use and understanding of concepts such as "facet," "facet analysis," and "faceted classification." The paper traces the history of these ideas and how they have been employed in different contexts. What may be termed the classical school of faceted classification is given some prominence, through the ideas of Ranganathan and the Classification Research Group, but other interpretations are also explored. Attention is paid not only to the idea of what facet analysis is, and what purpose it serves, but also the language utilized to describe and explain it.
  4. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.009493897 = product of:
      0.037975587 = sum of:
        0.037975587 = product of:
          0.075951174 = sum of:
            0.075951174 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.075951174 = score(doc=6048,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 9.2007 15:41:14
  5. Broughton, V.: Science and knowledge organization : an editorial (2021) 0.01
    0.0077536246 = product of:
      0.031014498 = sum of:
        0.031014498 = weight(_text_:science in 593) [ClassicSimilarity], result of:
          0.031014498 = score(doc=593,freq=6.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.25204095 = fieldWeight in 593, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=593)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of this article is to identify the most important factors and features in the evolution of thesauri and ontologies through a dialectic model. This model relies on a dialectic process or idea which could be discovered via a dialectic method. This method has focused on identifying the logical relationship between a beginning proposition, or an idea called a thesis, a negation of that idea called the antithesis, and the result of the conflict between the two ideas, called a synthesis. During the creation of knowl­edge organization systems (KOSs), the identification of logical relations between different ideas has been made possible through the consideration and use of the most influential methods and tools such as dictionaries, Roget's Thesaurus, thesaurus, micro-, macro- and metathesauri, ontology, lower, middle and upper level ontologies. The analysis process has adapted a historical methodology, more specifically a dialectic method and documentary method as the reasoning process. This supports our arguments and synthesizes a method for the analysis of research results. Confirmed by the research results, the principle of unity has shown to be the most important factor in the development and evolution of the structure of knowl­edge organization systems and their types. There are various types of unity when considering the analysis of logical relations. These include the principle of unity of alphabetical order, unity of science, semantic unity, structural unity and conceptual unity. The results have clearly demonstrated a movement from plurality to unity in the assembling of the complex structure of knowl­edge organization systems to increase information and knowl­edge storage and retrieval performance.
    Footnote
    Editorial zu einem Special issue on 'Science and knowledge organization' mit längeren Überblicken zu wichtigen Begriffen der Wissensorgansiation.
  6. Broughton, V.: Brian Vickery, September 11, 1918-October 17, 2009 (2011) 0.01
    0.0071624913 = product of:
      0.028649965 = sum of:
        0.028649965 = weight(_text_:science in 1788) [ClassicSimilarity], result of:
          0.028649965 = score(doc=1788,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.23282544 = fieldWeight in 1788, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0625 = fieldNorm(doc=1788)
      0.25 = coord(1/4)
    
    Abstract
    The article reviews the life and work of Brian Campbell Vickery, one of the major figures of British classification and information retrieval, and a scholar of international reputation. His career as librarian, researcher, and academic is described, as is the part he played in the development of information science theory in the twentieth century. Some of his most significant publications are listed, with reference to the scale and breadth of his published work overall.
  7. Broughton, V.: Faceted classification as a basis for knowledge organization in a digital environment : the Bliss Bibliographic Classification as a model for vocabulary management and the creation of multi-dimensional knowledge structures (2001) 0.01
    0.006981028 = product of:
      0.027924111 = sum of:
        0.027924111 = product of:
          0.055848222 = sum of:
            0.055848222 = weight(_text_:history in 5895) [ClassicSimilarity], result of:
              0.055848222 = score(doc=5895,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.25698814 = fieldWeight in 5895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5895)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Broughton is one of the key people working on the second edition of the Bliss Bibliographic Classification (BC2). Her article has a brief, informative history of facets, then discusses semantic vs. syntactic relationships, standard facets used by Ranganathan and the Classification Research Group, facet analysis and citation order, and how to build subject indexes out of faceted classifications, all with occasional reference to digital environments and hypertext, but never with any specifics. It concludes by saying of faceted classification that the "capacity which it has to create highly sophisticated structures for the accommodation of complex objects suggests that it is worth investigation as an organizational tool for digital materials, and that the results of such investigation would be knowledge structures of unparalleled utility and elegance." How to build them is left to the reader, but this article provides an excellent starting point. It includes an example that shows how general concepts can be applied to a small set of documents and subjects, and how terms can be adapted to suit the material and users
  8. Broughton, V.: ¬The fall and rise of knowledge organization : new dimensions of subject description and retrieval (2010) 0.01
    0.006981028 = product of:
      0.027924111 = sum of:
        0.027924111 = product of:
          0.055848222 = sum of:
            0.055848222 = weight(_text_:history in 3940) [ClassicSimilarity], result of:
              0.055848222 = score(doc=3940,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.25698814 = fieldWeight in 3940, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3940)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this editorial is to introduce the selected Proceedings of the 1st National Conference of ISKO UK, the UK Chapter of the International Society for Knowledge Organization. It aims to provide some background for the group, and place it within the context of the recent history of information organization and retrieval in subject domains. Design/methodology/approach - The paper introduces a selection of papers delivered at the 1st National Conference of the UK Chapter of the International Society for Knowledge Organization. Findings - The field of knowledge organization is lively and progressive, and researchers and practitioners in many sectors are actively engaged with it, despite its apparent decline in LIS education. New communities of interest may use different terms to describe this work, but there is much common ground, and a growing convergence of ideas and methods. Originality/value - The value of existing theory is now more widely recognised, and the importance of structured knowledge organization systems and vocabularies in retrieval is generally acknowledged. It is to be hoped that these important areas of information practice and research will soon be restored to their former place in professional education.
  9. Broughton, V.: Faceted classification in support of diversity : the role of concepts and terms in representing religion (2020) 0.01
    0.005371868 = product of:
      0.021487473 = sum of:
        0.021487473 = weight(_text_:science in 5992) [ClassicSimilarity], result of:
          0.021487473 = score(doc=5992,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.17461908 = fieldWeight in 5992, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=5992)
      0.25 = coord(1/4)
    
    Abstract
    The paper examines the development of facet analysis as a methodology and the role it plays in building classifications and other knowledge-organization tools. The use of categorical analysis in areas other than library and information science is also considered. The suitability of the faceted approach for humanities documentation is explored through a critical description of the FATKS (Facet Analytical Theory in Managing Knowledge Structure for Humanities) project carried out at University College London. This research focused on building a conceptual model for the subject of religion together with a relational database and search-and-browse interfaces that would support some degree of automatic classification. The paper concludes with a discussion of the differences between the conceptual model and the vocabulary used to populate it, and how, in the case of religion, the choice of terminology can create an apparent bias in the system.
  10. Broughton, V.: Essential classification (2004) 0.00
    0.004836598 = product of:
      0.019346392 = sum of:
        0.019346392 = product of:
          0.038692784 = sum of:
            0.038692784 = weight(_text_:history in 2824) [ClassicSimilarity], result of:
              0.038692784 = score(doc=2824,freq=6.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.17804661 = fieldWeight in 2824, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Footnote
    In Chapter 10, "Controlled indexing languages," Professor Broughton states that a classification scheme is truly a language "since it permits communication and the exchange of information" (p. 89), a Statement with which this reviewer wholly agrees. Chapter 11, however, "Word-based approaches to retrieval," moves us to a different field altogether, offering only a narrow view of the whole world of controlled indexing languages such as thesauri, and presenting disconnected discussions of alphabetical filing, form and structure of subject headings, modern developments in alphabetical subject indexing, etc. Chapters 12 and 13 focus an the Library of Congress Subject Headings (LCSH), without even a passing reference to existing subject headings lists in other languages (French RAMEAU, German SWK, etc.). If it is not surprising to see a section on subject headings in a book on classification, the two subjects being taught together in most library schools, the location of this section in the middle of this particular book is more difficult to understand. Chapter 14 brings the reader back to classification, for a discussion of essentials of classification scheme application. The following five chapters present in turn each one of the three major and currently used bibliographic classification schemes, in order of increasing complexity and difficulty of application. The Library of Congress Classification (LCC), the easiest to use, is covered in chapters 15 and 16. The Dewey Decimal Classification (DDC) deserves only a one-chapter treatment (Chapter 17), while the functionalities of the Universal Decimal Classification (UDC), which Professor Broughton knows extremely well, are described in chapters 18 and 19. Chapter 20 is a general discussion of faceted classification, on par with the first seven chapters for its theoretical content. Chapter 21, an interesting last chapter on managing classification, addresses down-to-earth matters such as the cost of classification, the need for re-classification, advantages and disadvantages of using print versions or e-versions of classification schemes, choice of classification scheme, general versus special scheme. But although the questions are interesting, the chapter provides only a very general overview of what appropriate answers might be. To facilitate reading and learning, summaries are strategically located at various places in the text, and always before switching to a related subject. Professor Broughton's choice of examples is always interesting, and sometimes even entertaining (see for example "Inside out: A brief history of underwear" (p. 71)). With many examples, however, and particularly those that appear in the five chapters an classification scheme applications, the novice reader would have benefited from more detailed explanations. On page 221, for example, "The history and social influence of the potato" results in this analysis of concepts: Potato - Sociology, and in the UDC class number: 635.21:316. What happened to the "history" aspect? Some examples are not very convincing: in Animals RT Reproduction and Art RT Reproduction (p. 102), the associative relationship is not appropriate as it is used to distinguish homographs and would do nothing to help either the indexer or the user at the retrieval stage.
  11. Broughton, V.: Notational expressivity : the case for and against the representation of internal subject structure in notational coding (1999) 0.00
    0.0047469484 = product of:
      0.018987793 = sum of:
        0.018987793 = product of:
          0.037975587 = sum of:
            0.037975587 = weight(_text_:22 in 6392) [ClassicSimilarity], result of:
              0.037975587 = score(doc=6392,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.23214069 = fieldWeight in 6392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6392)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    10. 8.2001 13:22:14
  12. Broughton, V.: Concepts and terms in the faceted classification : the case of UDC (2010) 0.00
    0.004476557 = product of:
      0.017906228 = sum of:
        0.017906228 = weight(_text_:science in 4065) [ClassicSimilarity], result of:
          0.017906228 = score(doc=4065,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 4065, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4065)
      0.25 = coord(1/4)
    
    Abstract
    Recent revision of UDC classes has aimed at implementing a more faceted approach. Many compound classes have been removed from the main tables, and more radical revisions of classes (particularly those for Medicine and Religion) have introduced a rigorous analysis, a clearer sense of citation order, and building of compound classes according to a more logical system syntax. The faceted approach provides a means of formalizing the relationships in the classification and making them explicit for machine recognition. In the Bliss Bibliographic Classification (BC2) (which has been a source for both UDC classes mentioned above), terminologies are encoded for automatic generation of hierarchical and associative relationships. Nevertheless, difficulties are encountered in vocabulary control, and a similar phenomenon is observed in UDC. Current work has revealed differences in the vocabulary of humanities and science, notably the way in which terms in the humanities should be handled when these are semantically complex. Achieving a balance between rigour in the structure of the classification and the complexity of natural language expression remains partially unresolved at present, but provides a fertile field for further research.
  13. Broughton, V.: Essential thesaurus construction (2006) 0.00
    0.0017906228 = product of:
      0.0071624913 = sum of:
        0.0071624913 = weight(_text_:science in 2924) [ClassicSimilarity], result of:
          0.0071624913 = score(doc=2924,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.05820636 = fieldWeight in 2924, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.015625 = fieldNorm(doc=2924)
      0.25 = coord(1/4)
    
    Abstract
    Many information professionals working in small units today fail to find the published tools for subject-based organization that are appropriate to their local needs, whether they are archivists, special librarians, information officers, or knowledge or content managers. Large established standards for document description and organization are too unwieldy, unnecessarily detailed, or too expensive to install and maintain. In other cases the available systems are insufficient for a specialist environment, or don't bring things together in a helpful way. A purpose built, in-house system would seem to be the answer, but too often the skills necessary to create one are lacking. This practical text examines the criteria relevant to the selection of a subject-management system, describes the characteristics of some common types of subject tool, and takes the novice step by step through the process of creating a system for a specialist environment. The methodology employed is a standard technique for the building of a thesaurus that incidentally creates a compatible classification or taxonomy, both of which may be used in a variety of ways for document or information management. Key areas covered are: What is a thesaurus? Tools for subject access and retrieval; what a thesaurus is used for? Why use a thesaurus? Examples of thesauri; the structure of a thesaurus; thesaural relationships; practical thesaurus construction; the vocabulary of the thesaurus; building the systematic structure; conversion to alphabetic format; forms of entry in the thesaurus; maintaining the thesaurus; thesaurus software; and; the wider environment. Essential for the practising information professional, this guide is also valuable for students of library and information science.