Search (21 results, page 1 of 2)

  • × author_ss:"Chen, C."
  1. Chen, C.: Top Ten Problems in Visual Interfaces to Digital Libraries (2002) 0.05
    0.04834027 = product of:
      0.09668054 = sum of:
        0.042974945 = weight(_text_:science in 4840) [ClassicSimilarity], result of:
          0.042974945 = score(doc=4840,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.34923816 = fieldWeight in 4840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.09375 = fieldNorm(doc=4840)
        0.053705595 = product of:
          0.10741119 = sum of:
            0.10741119 = weight(_text_:22 in 4840) [ClassicSimilarity], result of:
              0.10741119 = score(doc=4840,freq=4.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.6565931 = fieldWeight in 4840, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4840)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:13:11
    Series
    Lecture notes in computer science; 2539
  2. Börner, K.; Chen, C.: Visual Interfaces to Digital Libraries : Motivation, Utilization, and Socio-technical Challenges (2002) 0.05
    0.04834027 = product of:
      0.09668054 = sum of:
        0.042974945 = weight(_text_:science in 1359) [ClassicSimilarity], result of:
          0.042974945 = score(doc=1359,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.34923816 = fieldWeight in 1359, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.09375 = fieldNorm(doc=1359)
        0.053705595 = product of:
          0.10741119 = sum of:
            0.10741119 = weight(_text_:22 in 1359) [ClassicSimilarity], result of:
              0.10741119 = score(doc=1359,freq=4.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.6565931 = fieldWeight in 1359, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1359)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:20:07
    Series
    Lecture notes in computer science; 2539
  3. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.02
    0.020573197 = product of:
      0.041146394 = sum of:
        0.02532323 = weight(_text_:science in 5272) [ClassicSimilarity], result of:
          0.02532323 = score(doc=5272,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20579056 = fieldWeight in 5272, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5272)
        0.015823163 = product of:
          0.031646326 = sum of:
            0.031646326 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.031646326 = score(doc=5272,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.359-377
  4. Börner, K.; Chen, C.; Boyack, K.W.: Visualizing knowledge domains (2002) 0.02
    0.01863657 = product of:
      0.03727314 = sum of:
        0.017726261 = weight(_text_:science in 4286) [ClassicSimilarity], result of:
          0.017726261 = score(doc=4286,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1440534 = fieldWeight in 4286, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4286)
        0.019546878 = product of:
          0.039093755 = sum of:
            0.039093755 = weight(_text_:history in 4286) [ClassicSimilarity], result of:
              0.039093755 = score(doc=4286,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.1798917 = fieldWeight in 4286, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4286)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This chapter reviews visualization techniques that can be used to map the ever-growing domain structure of scientific disciplines and to support information retrieval and classification. In contrast to the comprehensive surveys conducted in traditional fashion by Howard White and Katherine McCain (1997, 1998), this survey not only reviews emerging techniques in interactive data analysis and information visualization, but also depicts the bibliographical structure of the field itself. The chapter starts by reviewing the history of knowledge domain visualization. We then present a general process flow for the visualization of knowledge domains and explain commonly used techniques. In order to visualize the domain reviewed by this chapter, we introduce a bibliographic data set of considerable size, which includes articles from the citation analysis, bibliometrics, semantics, and visualization literatures. Using tutorial style, we then apply various algorithms to demonstrate the visualization effectsl produced by different approaches and compare the results. The domain visualizations reveal the relationships within and between the four fields that together constitute the focus of this chapter. We conclude with a general discussion of research possibilities. Painting a "big picture" of scientific knowledge has long been desirable for a variety of reasons. Traditional approaches are brute forcescholars must sort through mountains of literature to perceive the outlines of their field. Obviously, this is time-consuming, difficult to replicate, and entails subjective judgments. The task is enormously complex. Sifting through recently published documents to find those that will later be recognized as important is labor intensive. Traditional approaches struggle to keep up with the pace of information growth. In multidisciplinary fields of study it is especially difficult to maintain an overview of literature dynamics. Painting the big picture of an everevolving scientific discipline is akin to the situation described in the widely known Indian legend about the blind men and the elephant. As the story goes, six blind men were trying to find out what an elephant looked like. They touched different parts of the elephant and quickly jumped to their conclusions. The one touching the body said it must be like a wall; the one touching the tail said it was like a snake; the one touching the legs said it was like a tree trunk, and so forth. But science does not stand still; the steady stream of new scientific literature creates a continuously changing structure. The resulting disappearance, fusion, and emergence of research areas add another twist to the tale-it is as if the elephant is running and dynamically changing its shape. Domain visualization, an emerging field of study, is in a similar situation. Relevant literature is spread across disciplines that have traditionally had few connections. Researchers examining the domain from a particular discipline cannot possibly have an adequate understanding of the whole. As noted by White and McCain (1997), the new generation of information scientists is technically driven in its efforts to visualize scientific disciplines. However, limited progress has been made in terms of connecting pioneers' theories and practices with the potentialities of today's enabling technologies. If the difference between past and present generations lies in the power of available technologies, what they have in common is the ultimate goal-to reveal the development of scientific knowledge.
    Source
    Annual review of information science and technology. 37(2003), S.179-258
  5. Liu, S.; Chen, C.: ¬The differences between latent topics in abstracts and citation contexts of citing papers (2013) 0.02
    0.016864695 = product of:
      0.03372939 = sum of:
        0.017906228 = weight(_text_:science in 671) [ClassicSimilarity], result of:
          0.017906228 = score(doc=671,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 671, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=671)
        0.015823163 = product of:
          0.031646326 = sum of:
            0.031646326 = weight(_text_:22 in 671) [ClassicSimilarity], result of:
              0.031646326 = score(doc=671,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.19345059 = fieldWeight in 671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=671)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 3.2013 19:50:00
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.627-639
  6. Chen, C.: Mapping scientific frontiers : the quest for knowledge visualization (2003) 0.01
    0.011324894 = product of:
      0.045299575 = sum of:
        0.045299575 = weight(_text_:science in 2213) [ClassicSimilarity], result of:
          0.045299575 = score(doc=2213,freq=20.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.36812937 = fieldWeight in 2213, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=2213)
      0.25 = coord(1/4)
    
    Footnote
    Rez. in: JASIST 55(2004) no.4, S.363-365 (J.W. Schneider): "Theories and methods for mapping scientific frontiers have existed for decades-especially within quantitative studies of science. This book investigates mapping scientific frontiers from the perspective of visual thinking and visual exploration (visual communication). The central theme is construction of visual-spatial representations that may convey insights into the dynamic structure of scientific frontiers. The author's previous book, Information Visualisation and Virtual Environments (1999), also concerns some of the ideas behind and possible benefits of visual communication. This new book takes a special focus an knowledge visualization, particularly in relation to science literature. The book is not a technical tutorial as the focus is an principles of visual communication and ways that may reveal the dynamics of scientific frontiers. The new approach to science mapping presented is the culmination of different approaches from several disciplines, such as philosophy of science, information retrieval, scientometrics, domain analysis, and information visualization. The book therefore addresses an audience with different disciplinary backgrounds and tries to stimulate interdisciplinary research. Chapter 1, The Growth of Scientific Knowledge, introduces a range of examples that illustrate fundamental issues concerning visual communication in general and science mapping in particular. Chapter 2, Mapping the Universe, focuses an the basic principles of cartography for visual communication. Chapter 3, Mapping the Mind, turns the attention inward and explores the design of mind maps, maps that represent our thoughts, experience, and knowledge. Chapter 4, Enabling Techniques for Science Mapping, essentially outlines the author's basic approach to science mapping.
    The title of Chapter 5, On the Shoulders of Giants, implies that knowledge of the structure of scientific frontiers in the immediate past holds the key to a fruitful exploration of people's intellectual assets. Chapter 6, Tracing Competing Paradigms explains how information visualization can draw upon the philosophical framework of paradigm shifts and thereby enable scientists to track the development of Competing paradigms. The final chapter, Tracking Latent Domain Knowledge, turns citation analysis upside down by looking at techniques that may reveal latent domain knowledge. Mapping Scientific Frontiers: The Quest for Knowledge Visualization is an excellent book and is highly recommended. The book convincingly outlines general theories conceming cartography, visual communication, and science mapping-especially how metaphors can make a "big picture"simple and useful. The author likewise Shows how the GSA framework is based not only an technical possibilities but indeed also an the visualization principles presented in the beginning chapters. Also, the author does a fine job of explaining why the mapping of scientific frontiers needs a combined effort from a diverse range of underlying disciplines, such as philosophy of science, sociology of science, scientometrics, domain analyses, information visualization, knowledge discovery, and data mining.
  7. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.01
    0.008953114 = product of:
      0.035812456 = sum of:
        0.035812456 = weight(_text_:science in 1131) [ClassicSimilarity], result of:
          0.035812456 = score(doc=1131,freq=8.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.2910318 = fieldWeight in 1131, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1131)
      0.25 = coord(1/4)
    
    Abstract
    Using the option Analyze Results with the Web of Science, one can directly generate overlays onto global journal maps of science. The maps are based on the 10,000+ journals contained in the Journal Citation Reports (JCR) of the Science and Social Sciences Citation Indices (2011). The disciplinary diversity of the retrieval is measured in terms of Rao-Stirling's "quadratic entropy" (Izsák & Papp, 1995). Since this indicator of interdisciplinarity is normalized between 0 and 1, interdisciplinarity can be compared among document sets and across years, cited or citing. The colors used for the overlays are based on Blondel, Guillaume, Lambiotte, and Lefebvre's (2008) community-finding algorithms operating on the relations among journals included in the JCR. The results can be exported from VOSViewer with different options such as proportional labels, heat maps, or cluster density maps. The maps can also be web-started or animated (e.g., using PowerPoint). The "citing" dimension of the aggregated journal-journal citation matrix was found to provide a more comprehensive description than the matrix based on the cited archive. The relations between local and global maps and their different functions in studying the sciences in terms of journal literatures are further discussed: Local and global maps are based on different assumptions and can be expected to serve different purposes for the explanation.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.12, S.2573-2586
  8. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.01
    0.0077536246 = product of:
      0.031014498 = sum of:
        0.031014498 = weight(_text_:science in 1200) [ClassicSimilarity], result of:
          0.031014498 = score(doc=1200,freq=6.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.25204095 = fieldWeight in 1200, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1200)
      0.25 = coord(1/4)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.334-351
  9. Chen, C.; Ibekwe-SanJuan, F.; Hou, J.: ¬The structure and dynamics of cocitation clusters : a multiple-perspective cocitation analysis (2010) 0.01
    0.0075969696 = product of:
      0.030387878 = sum of:
        0.030387878 = weight(_text_:science in 3591) [ClassicSimilarity], result of:
          0.030387878 = score(doc=3591,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.24694869 = fieldWeight in 3591, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=3591)
      0.25 = coord(1/4)
    
    Abstract
    A multiple-perspective cocitation analysis method is introduced for characterizing and interpreting the structure and dynamics of cocitation clusters. The method facilitates analytic and sense making tasks by integrating network visualization, spectral clustering, automatic cluster labeling, and text summarization. Cocitation networks are decomposed into cocitation clusters. The interpretation of these clusters is augmented by automatic cluster labeling and summarization. The method focuses on the interrelations between a cocitation cluster's members and their citers. The generic method is applied to a three-part analysis of the field of information science as defined by 12 journals published between 1996 and 2008: (a) a comparative author cocitation analysis (ACA), (b) a progressive ACA of a time series of cocitation networks, and (c) a progressive document cocitation analysis (DCA). Results show that the multiple-perspective method increases the interpretability and accountability of both ACA and DCA networks.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.7, S.1386-1409
  10. Chen, C.; Hu, Z.; Milbank, J.; Schultz, T.: ¬A visual analytic study of retracted articles in scientific literature (2013) 0.01
    0.0063308077 = product of:
      0.02532323 = sum of:
        0.02532323 = weight(_text_:science in 610) [ClassicSimilarity], result of:
          0.02532323 = score(doc=610,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20579056 = fieldWeight in 610, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=610)
      0.25 = coord(1/4)
    
    Abstract
    Retracting published scientific articles is increasingly common. Retraction is a self-correction mechanism of the scientific community to maintain and safeguard the integrity of scientific literature. However, a retracted article may pose a profound and long-lasting threat to the credibility of the literature. New articles may unknowingly build their work on false claims made in retracted articles. Such dependencies on retracted articles may become implicit and indirect. Consequently, it becomes increasingly important to detect implicit and indirect threats. In this article, our aim is to raise the awareness of the potential threats of retracted articles even after their retraction and demonstrate a visual analytic study of retracted articles with reference to the rest of the literature and how their citations are influenced by their retraction. The context of highly cited retracted articles is visualized in terms of a co-citation network as well as the distribution of articles that have high-order citation dependencies on retracted articles. Survival analyses of time to retraction and postretraction citation are included. Sentences that explicitly cite retracted articles are extracted from full-text articles. Transitions of topics over time are depicted in topic-flow visualizations. We recommend that new visual analytic and science mapping tools should take retracted articles into account and facilitate tasks specifically related to the detection and monitoring of retracted articles.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.234-253
  11. Chen, C.: Visualizing scientific paradigms : an introduction (2003) 0.01
    0.0062671797 = product of:
      0.025068719 = sum of:
        0.025068719 = weight(_text_:science in 1455) [ClassicSimilarity], result of:
          0.025068719 = score(doc=1455,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20372227 = fieldWeight in 1455, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1455)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.5, S.392-393
  12. Chen, C.; Kuljis, J.: ¬The rising landscape : a visual exploration of superstring revolutions in physics (2003) 0.01
    0.0062671797 = product of:
      0.025068719 = sum of:
        0.025068719 = weight(_text_:science in 1469) [ClassicSimilarity], result of:
          0.025068719 = score(doc=1469,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20372227 = fieldWeight in 1469, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1469)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.5, S.435-446
  13. Chen, C.; Paul, R.J.; O'Keefe, B.: Fitting the Jigsaw of citation : information visualization in domain analysis (2001) 0.01
    0.005371868 = product of:
      0.021487473 = sum of:
        0.021487473 = weight(_text_:science in 5766) [ClassicSimilarity], result of:
          0.021487473 = score(doc=5766,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.17461908 = fieldWeight in 5766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=5766)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.4, S.315-330
  14. Chen, C.; Cribbin, T.; Macredie, R.; Morar, S.: Visualizing and tracking the growth of competing paradigms : two case studies (2002) 0.01
    0.005371868 = product of:
      0.021487473 = sum of:
        0.021487473 = weight(_text_:science in 602) [ClassicSimilarity], result of:
          0.021487473 = score(doc=602,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.17461908 = fieldWeight in 602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=602)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.678.689
  15. Ding, W.; Chen, C.: Dynamic topic detection and tracking : a comparison of HDP, C-word, and cocitation methods (2014) 0.01
    0.005371868 = product of:
      0.021487473 = sum of:
        0.021487473 = weight(_text_:science in 1502) [ClassicSimilarity], result of:
          0.021487473 = score(doc=1502,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.17461908 = fieldWeight in 1502, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=1502)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.10, S.2084-2097
  16. Chen, C.; Czerwinski, M.; Macredie, R.: Individual differences in virtual environments : introduction and overview (2000) 0.00
    0.004476557 = product of:
      0.017906228 = sum of:
        0.017906228 = weight(_text_:science in 4600) [ClassicSimilarity], result of:
          0.017906228 = score(doc=4600,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 4600, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4600)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science. 51(2000) no.6, S.499-507
  17. Chen, C.: Individual differences in a spatial-semantic virtual environment (2000) 0.00
    0.004476557 = product of:
      0.017906228 = sum of:
        0.017906228 = weight(_text_:science in 4603) [ClassicSimilarity], result of:
          0.017906228 = score(doc=4603,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 4603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4603)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science. 51(2000) no.6, S.529-542
  18. Ping, Q.; He, J.; Chen, C.: How many ways to use CiteSpace? : a study of user interactive events over 14 months (2017) 0.00
    0.004476557 = product of:
      0.017906228 = sum of:
        0.017906228 = weight(_text_:science in 3602) [ClassicSimilarity], result of:
          0.017906228 = score(doc=3602,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 3602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3602)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.5, S.1234-1256
  19. He, J.; Ping, Q.; Lou, W.; Chen, C.: PaperPoles : facilitating adaptive visual exploration of scientific publications by citation links (2019) 0.00
    0.004476557 = product of:
      0.017906228 = sum of:
        0.017906228 = weight(_text_:science in 5326) [ClassicSimilarity], result of:
          0.017906228 = score(doc=5326,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 5326, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5326)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.8, S.843-857
  20. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.00
    0.004476557 = product of:
      0.017906228 = sum of:
        0.017906228 = weight(_text_:science in 633) [ClassicSimilarity], result of:
          0.017906228 = score(doc=633,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 633, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=633)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.8, S.1065-1078