Search (13 results, page 1 of 1)

  • × author_ss:"Szostak, R."
  1. Szostak, R.: Comment on Hjørland's concept theory (2010) 0.01
    0.0124058 = product of:
      0.0496232 = sum of:
        0.0496232 = weight(_text_:science in 5107) [ClassicSimilarity], result of:
          0.0496232 = score(doc=5107,freq=6.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.40326554 = fieldWeight in 5107, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0625 = fieldNorm(doc=5107)
      0.25 = coord(1/4)
    
    Content
    Bezug zu: Hjoerland, B.: Concept theory. In: Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1519-1536.
    Footnote
    Erwiderung darauf: Hjørland, B.: Answer to Professor Szostak (concept theory) in: Journal of the American Society for Information Science and Technology. 61(2010) no.5, S.1078-1080.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.5, S.1076-1077
  2. Szostak, R.: Applied Knowledge Organization and the history of the world (2018) 0.01
    0.011169644 = product of:
      0.044678576 = sum of:
        0.044678576 = product of:
          0.08935715 = sum of:
            0.08935715 = weight(_text_:history in 4699) [ClassicSimilarity], result of:
              0.08935715 = score(doc=4699,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.41118103 = fieldWeight in 4699, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4699)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  3. Szostak, R.: Classifying science : phenomena, data, theory, method, practice (2004) 0.01
    0.010049845 = product of:
      0.04019938 = sum of:
        0.04019938 = weight(_text_:science in 325) [ClassicSimilarity], result of:
          0.04019938 = score(doc=325,freq=28.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.3266824 = fieldWeight in 325, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
      0.25 = coord(1/4)
    
    Abstract
    Classification is the essential first step in science. The study of science, as well as the practice of science, will thus benefit from a detailed classification of different types of science. In this book, science - defined broadly to include the social sciences and humanities - is first unpacked into its constituent elements: the phenomena studied, the data used, the theories employed, the methods applied, and the practices of scientists. These five elements are then classified in turn. Notably, the classifications of both theory types and methods allow the key strengths and weaknesses of different theories and methods to be readily discerned and compared. Connections across classifications are explored: should certain theories or phenomena be investigated only with certain methods? What is the proper function and form of scientific paradigms? Are certain common errors and biases in scientific practice associated with particular phenomena, data, theories, or methods? The classifications point to several ways of improving both specialized and interdisciplinary research and teaching, and especially of enhancing communication across communities of scholars. The classifications also support a superior system of document classification that would allow searches by theory and method used as well as causal links investigated.
    Content
    Inhalt: - Chapter 1: Classifying Science: 1.1. A Simple Classificatory Guideline - 1.2. The First "Cut" (and Plan of Work) - 1.3. Some Preliminaries - Chapter 2: Classifying Phenomena and Data: 2.1. Classifying Phenomena - 2.2. Classifying Data - Chapter 3: Classifying Theory: 3.1. Typology of Theory - 3.2. What Is a Theory? - 3.3. Evaluating Theories - 3.4. Types of Theory and the Five Types of Causation - 3.5. Classifying Individual Theories - 3.6. Advantages of a Typology of Theory - Chapter 4: Classifying Method: 4.1. Classifying Methods - 4.2. Typology of Strengths and Weaknesses of Methods - 4.3. Qualitative Versus Quantitative Analysis Revisited - 4.4. Evaluating Methods - 4.5. Classifying Particular Methods Within The Typology - 4.6. Advantages of a Typology of Methods - Chapter 5: Classifying Practice: 5.1. Errors and Biases in ScienceChapter - 5.2. Typology of (Critiques of) Scientific Practice - 5.3. Utilizing This Classification - 5.4. The Five Types of Ethical Analysis - Chapter 6: Drawing Connections Across These Classifications: 6.1. Theory and Method - 6.2. Theory (Method) and Phenomena (Data) - 6.3. Better Paradigms - 6.4. Critiques of Scientific Practice: Are They Correlated with Other Classifications? - Chapter 7: Classifying Scientific Documents: 7.1. Faceted or Enumerative? - 7.2. Classifying By Phenomena Studied - 7.3. Classifying By Theory Used - 7.4. Classifying By Method Used - 7.5 Links Among Subjects - 7.6. Type of Work, Language, and More - 7.7. Critiques of Scientific Practice - 7.8. Classifying Philosophy - 7.9. Evaluating the System - Chapter 8: Concluding Remarks: 8.1. The Classifications - 8.2. Advantages of These Various Classifications - 8.3. Drawing Connections Across Classifications - 8.4. Golden Mean Arguments - 8.5. Why Should Science Be Believed? - 8.6. How Can Science Be Improved? - 8.7. How Should Science Be Taught?
    Footnote
    Rez. in: KO 32(2005) no.2, S.93-95 (H. Albrechtsen): "The book deals with mapping of the structures and contents of sciences, defined broadly to include the social sciences and the humanities. According to the author, the study of science, as well as the practice of science, could benefit from a detailed classification of different types of science. The book defines five universal constituents of the sciences: phenomena, data, theories, methods and practice. For each of these constituents, the author poses five questions, in the well-known 5W format: Who, What, Where, When, Why? - with the addition of the question How? (Szostak 2003). Two objectives of the author's endeavor stand out: 1) decision support for university curriculum development across disciplines and decision support for university students at advanced levels of education in selection of appropriate courses for their projects and to support cross-disciplinary inquiry for researchers and students; 2) decision support for researchers and students in scientific inquiry across disciplines, methods and theories. The main prospective audience of this book is university curriculum developers, university students and researchers, in that order of priority. The heart of the book is the chapters unfolding the author's ideas about how to classify phenomena and data, theory, method and practice, by use of the 5W inquiry model. . . .
    Series
    Information Science & Knowledge Management ; 7
  4. Szostak, R.: Speaking truth to power in classification : response to Fox's review of my work; KO 39:4, 300 (2013) 0.01
    0.009493897 = product of:
      0.037975587 = sum of:
        0.037975587 = product of:
          0.075951174 = sum of:
            0.075951174 = weight(_text_:22 in 591) [ClassicSimilarity], result of:
              0.075951174 = score(doc=591,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.46428138 = fieldWeight in 591, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=591)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 2.2013 12:35:05
  5. Szostak, R.: Classification, interdisciplinarity, and the study of science (2008) 0.01
    0.0077536246 = product of:
      0.031014498 = sum of:
        0.031014498 = weight(_text_:science in 1893) [ClassicSimilarity], result of:
          0.031014498 = score(doc=1893,freq=6.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.25204095 = fieldWeight in 1893, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1893)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - This paper aims to respond to the 2005 paper by Hjørland and Nissen Pedersen by suggesting that an exhaustive and universal classification of the phenomena that scholars study, and the methods and theories they apply, is feasible. It seeks to argue that such a classification is critical for interdisciplinary scholarship. Design/methodology/approach - The paper presents a literature-based conceptual analysis, taking Hjørland and Nissen Pedersen as its starting point. Hjørland and Nissen Pedersen had identified several difficulties that would be encountered in developing such a classification; the paper suggests how each of these can be overcome. It also urges a deductive approach as complementary to the inductive approach recommended by Hjørland and Nissen Pedersen. Findings - The paper finds that an exhaustive and universal classification of scholarly documents in terms of (at least) the phenomena that scholars study, and the theories and methods they apply, appears to be both possible and desirable. Practical implications - The paper suggests how such a project can be begun. In particular it stresses the importance of classifying documents in terms of causal links between phenomena. Originality/value - The paper links the information science, interdisciplinary, and study of science literatures, and suggests that the types of classification outlined above would be of great value to scientists/scholars, and that they are possible.
  6. Szostak, R.: Complex concepts into basic concepts (2011) 0.01
    0.0063308077 = product of:
      0.02532323 = sum of:
        0.02532323 = weight(_text_:science in 4926) [ClassicSimilarity], result of:
          0.02532323 = score(doc=4926,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20579056 = fieldWeight in 4926, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4926)
      0.25 = coord(1/4)
    
    Abstract
    Interdisciplinary communication, and thus the rate of progress in scholarly understanding, would be greatly enhanced if scholars had access to a universal classification of documents or ideas not grounded in particular disciplines or cultures. Such a classification is feasible if complex concepts can be understood as some combination of more basic concepts. There appear to be five main types of concept theory in the philosophical literature. Each provides some support for the idea of breaking complex into basic concepts that can be understood across disciplines or cultures, but each has detractors. None of these criticisms represents a substantive obstacle to breaking complex concepts into basic concepts within information science. Can we take the subject entries in existing universal but discipline-based classifications, and break these into a set of more basic concepts that can be applied across disciplinary classes? The author performs this sort of analysis for Dewey classes 300 to 339.9. This analysis will serve to identify the sort of 'basic concepts' that would lie at the heart of a truly universal classification. There are two key types of basic concept: the things we study (individuals, rocks, trees), and the relationships among these (talking, moving, paying).
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.11, S.2247-2265
  7. Szostak, R.: Classifying relationships (2012) 0.01
    0.0062671797 = product of:
      0.025068719 = sum of:
        0.025068719 = weight(_text_:science in 1923) [ClassicSimilarity], result of:
          0.025068719 = score(doc=1923,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20372227 = fieldWeight in 1923, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1923)
      0.25 = coord(1/4)
    
    Abstract
    This paper develops a classification of relationships among things, with many potential uses within information science. Unlike previous classifications of relationships, it is hoped that this classification will provide benefits that exceed the costs of application. The major theoretical innovation is to stress the importance of causal relationships, albeit not exclusively. The paper also stresses the advantages of using compounds of simpler terms: verbs compounded with other verbs, adverbs, or things. The classification builds upon a review of the previous literature and a broad inductive survey of potential sources in a recent article in this journal. The result is a classification that is both manageable in size and easy to apply and yet encompasses all of the relationships necessary for classifying documents or even ideas.
  8. Szostak, R.; Gnoli, C.: Classifying by phenomena, theories and methods : examples with focused social science theories (2008) 0.01
    0.0062671797 = product of:
      0.025068719 = sum of:
        0.025068719 = weight(_text_:science in 2250) [ClassicSimilarity], result of:
          0.025068719 = score(doc=2250,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20372227 = fieldWeight in 2250, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2250)
      0.25 = coord(1/4)
    
  9. Szostak, R.: Toward a classification of relationships (2012) 0.01
    0.0062671797 = product of:
      0.025068719 = sum of:
        0.025068719 = weight(_text_:science in 131) [ClassicSimilarity], result of:
          0.025068719 = score(doc=131,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20372227 = fieldWeight in 131, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=131)
      0.25 = coord(1/4)
    
    Abstract
    Several attempts have been made to develop a classification of relationships, but none of these have been widely accepted or applied within information science. It would seem that information scientists, while appreciating the potential value of a classification of relationships, have found all previous classifications to be too complicated in application relative to the benefits they provide. This paper begins by reviewing previous attempts and drawing lessons from these. It then surveys a range of sources within and beyond the field of knowledge organization that can together provide the basis for the development of a novel classification of relationships. One critical insight is that relationships governing causation/influence should be accorded priority.
  10. Szostak, R.: ¬A pluralistic approach to the philosophy of classification : a case for "public knowledge" (2015) 0.01
    0.0062671797 = product of:
      0.025068719 = sum of:
        0.025068719 = weight(_text_:science in 5541) [ClassicSimilarity], result of:
          0.025068719 = score(doc=5541,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20372227 = fieldWeight in 5541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5541)
      0.25 = coord(1/4)
    
    Abstract
    Any classification system should be evaluated with respect to a variety of philosophical and practical concerns. This paper explores several distinct issues: the nature of a work, the value of a statement, the contribution of information science to philosophy, the nature of hierarchy, ethical evaluation, pre- versus postcoordination, the lived experience of librarians, and formalization versus natural language. It evaluates a particular approach to classification in terms of each of these but draws general lessons for philosophical evaluation. That approach to classification emphasizes the free combination of basic concepts representing both real things in the world and the relationships among these; works are also classified in terms of theories, methods, and perspectives applied.
  11. Szostak, R.: Skepticism and knowledge organization (2014) 0.01
    0.0055381064 = product of:
      0.022152426 = sum of:
        0.022152426 = product of:
          0.04430485 = sum of:
            0.04430485 = weight(_text_:22 in 1404) [ClassicSimilarity], result of:
              0.04430485 = score(doc=1404,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.2708308 = fieldWeight in 1404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1404)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Szostak, R.: ¬A schema for unifying human science : interdisciplinary perspectives on culture (2003) 0.01
    0.005371868 = product of:
      0.021487473 = sum of:
        0.021487473 = weight(_text_:science in 803) [ClassicSimilarity], result of:
          0.021487473 = score(doc=803,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.17461908 = fieldWeight in 803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=803)
      0.25 = coord(1/4)
    
  13. Szostak, R.; Gnoli, C.; López-Huertas, M.: Interdisciplinary knowledge organization 0.01
    0.0050646462 = product of:
      0.020258585 = sum of:
        0.020258585 = weight(_text_:science in 3804) [ClassicSimilarity], result of:
          0.020258585 = score(doc=3804,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.16463245 = fieldWeight in 3804, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=3804)
      0.25 = coord(1/4)
    
    LCSH
    Library science
    Subject
    Library science