Search (10 results, page 1 of 1)

  • × classification_ss:"BCA (FH K)"
  1. Tunkelang, D.: Faceted search (2009) 0.02
    0.018332135 = product of:
      0.03666427 = sum of:
        0.014324983 = weight(_text_:science in 26) [ClassicSimilarity], result of:
          0.014324983 = score(doc=26,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.11641272 = fieldWeight in 26, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=26)
        0.022339288 = product of:
          0.044678576 = sum of:
            0.044678576 = weight(_text_:history in 26) [ClassicSimilarity], result of:
              0.044678576 = score(doc=26,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.20559052 = fieldWeight in 26, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.03125 = fieldNorm(doc=26)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.
  2. Hars, A.: From publishing to knowledge networks : reinventing online knowledge infrastructures (2003) 0.01
    0.014156117 = product of:
      0.05662447 = sum of:
        0.05662447 = weight(_text_:science in 1634) [ClassicSimilarity], result of:
          0.05662447 = score(doc=1634,freq=20.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.46016172 = fieldWeight in 1634, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1634)
      0.25 = coord(1/4)
    
    LCSH
    Science publishing / Technological innovations
    Science / Periodicals
    Communication in science / Technological innovations
    Science / Methodology
    Science / Philosophy
    Subject
    Science publishing / Technological innovations
    Science / Periodicals
    Communication in science / Technological innovations
    Science / Methodology
    Science / Philosophy
  3. ¬The discipline of organizing (2013) 0.01
    0.0071624913 = product of:
      0.028649965 = sum of:
        0.028649965 = weight(_text_:science in 2172) [ClassicSimilarity], result of:
          0.028649965 = score(doc=2172,freq=8.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.23282544 = fieldWeight in 2172, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=2172)
      0.25 = coord(1/4)
    
    Abstract
    Organizing is such a common activity that we often do it without thinking much about it. In our daily lives we organize physical things--books on shelves, cutlery in kitchen drawers--and digital things--Web pages, MP3 files, scientific datasets. Millions of people create and browse Web sites, blog, tag, tweet, and upload and download content of all media types without thinking "I'm organizing now" or "I'm retrieving now." This book offers a framework for the theory and practice of organizing that integrates information organization (IO) and information retrieval (IR), bridging the disciplinary chasms between Library and Information Science and Computer Science, each of which views and teaches IO and IR as separate topics and in substantially different ways. It introduces the unifying concept of an Organizing System--an intentionally arranged collection of resources and the interactions they support--and then explains the key concepts and challenges in the design and deployment of Organizing Systems in many domains, including libraries, museums, business information systems, personal information management, and social computing. Intended for classroom use or as a professional reference, the book covers the activities common to all organizing systems: identifying resources to be organized; organizing resources by describing and classifying them; designing resource-based interactions; and maintaining resources and organization over time. The book is extensively annotated with disciplinary-specific notes to ground it with relevant concepts and references of library science, computing, cognitive science, law, and business.
  4. Meadow, C.T.: Text information retrieval systems (1992) 0.01
    0.0063308077 = product of:
      0.02532323 = sum of:
        0.02532323 = weight(_text_:science in 1519) [ClassicSimilarity], result of:
          0.02532323 = score(doc=1519,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20579056 = fieldWeight in 1519, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1519)
      0.25 = coord(1/4)
    
    Abstract
    This book's purpose is to teach people who will be searching or designing text retrieval systems how the systems work. For designers, it covers problems they will face and reviews currently available solutions to provide a basis for more advanced study. For the searcher its purpose is to describe why such systems work as they do. Text Information Retrieval Systems, Second Edition is primarily about computer-based retrieval systems, but the principles apply to non-mechanized ones as well. - Winner of the ASIS Best Information Science Book Award 2000!
    Series
    Library and information science
  5. Lalmas, M.: XML retrieval (2009) 0.01
    0.0063308077 = product of:
      0.02532323 = sum of:
        0.02532323 = weight(_text_:science in 4998) [ClassicSimilarity], result of:
          0.02532323 = score(doc=4998,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20579056 = fieldWeight in 4998, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4998)
      0.25 = coord(1/4)
    
    LCSH
    Query languages (Computer science)
    Subject
    Query languages (Computer science)
  6. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.00
    0.0047469484 = product of:
      0.018987793 = sum of:
        0.018987793 = product of:
          0.037975587 = sum of:
            0.037975587 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.037975587 = score(doc=987,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    23. 7.2017 13:49:22
  7. White, R.W.; Roth, R.A.: Exploratory search : beyond the query-response paradigm (2009) 0.00
    0.004476557 = product of:
      0.017906228 = sum of:
        0.017906228 = weight(_text_:science in 0) [ClassicSimilarity], result of:
          0.017906228 = score(doc=0,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 0, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=0)
      0.25 = coord(1/4)
    
    Abstract
    As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.
  8. Grossman, D.A.; Frieder, O.: Information retrieval : algorithms and heuristics (2004) 0.00
    0.0035812457 = product of:
      0.014324983 = sum of:
        0.014324983 = weight(_text_:science in 1486) [ClassicSimilarity], result of:
          0.014324983 = score(doc=1486,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.11641272 = fieldWeight in 1486, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=1486)
      0.25 = coord(1/4)
    
    Abstract
    Interested in how an efficient search engine works? Want to know what algorithms are used to rank resulting documents in response to user requests? The authors answer these and other key information on retrieval design and implementation questions is provided. This book is not yet another high level text. Instead, algorithms are thoroughly described, making this book ideally suited for both computer science students and practitioners who work on search-related applications. As stated in the foreword, this book provides a current, broad, and detailed overview of the field and is the only one that does so. Examples are used throughout to illustrate the algorithms. The authors explain how a query is ranked against a document collection using either a single or a combination of retrieval strategies, and how an assortment of utilities are integrated into the query processing scheme to improve these rankings. Methods for building and compressing text indexes, querying and retrieving documents in multiple languages, and using parallel or distributed processing to expedite the search are likewise described. This edition is a major expansion of the one published in 1998. Neuaufl. 2005: Besides updating the entire book with current techniques, it includes new sections on language models, cross-language information retrieval, peer-to-peer processing, XML search, mediators, and duplicate document detection.
  9. Innovations in information retrieval : perspectives for theory and practice (2011) 0.00
    0.0035812457 = product of:
      0.014324983 = sum of:
        0.014324983 = weight(_text_:science in 1757) [ClassicSimilarity], result of:
          0.014324983 = score(doc=1757,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.11641272 = fieldWeight in 1757, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=1757)
      0.25 = coord(1/4)
    
    Abstract
    The advent of new information retrieval (IR) technologies and approaches to storage and retrieval provide communities with previously unheard of opportunities for mass documentation, digitization, and the recording of information in all its forms. This book introduces and contextualizes these developments and looks at supporting research in IR, the debates, theories and issues. Contributed by an international team of experts, each authored chapter provides a snapshot of changes in the field, as well as the importance of developing innovation, creativity and thinking in IR practice and research. Key discussion areas include: browsing in new information environments classification revisited: a web of knowledge approaches to fiction retrieval research music information retrieval research folksonomies, social tagging and information retrieval digital information interaction as semantic navigation assessing web search machines: a webometric approach. The questions raised are of significance to the whole international library and information science community, and this is essential reading for LIS professionals , researchers and students, and for all those interested in the future of IR.
  10. Chu, H.: Information representation and retrieval in the digital age (2010) 0.00
    0.0025323231 = product of:
      0.0101292925 = sum of:
        0.0101292925 = weight(_text_:science in 92) [ClassicSimilarity], result of:
          0.0101292925 = score(doc=92,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.08231623 = fieldWeight in 92, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.015625 = fieldNorm(doc=92)
      0.25 = coord(1/4)
    
    Footnote
    Rez. in: JASIST 56(2005) no.2, S.215-216 (A. Heath): "What is small, thoroughly organized, and easy to understand? Well, it's Heting Chu's latest book an information retrieval. A very welcome release, this small literary addition to the field (only 248 pages) contains a concise and weIl-organized discussion of every major topic in information retrieval. The often-complex field of information retrieval is presented from its origin in the early 1950s to the present day. The organization of this text is top-notch, thus making this an easy read for even the novice. Unlike other titles in this area, Chu's user-friendly style of writing is done an purpose to properly introduce newcomers to the field in a less intimidating way. As stated by the author in the Preface, the purpose of the book is to "present a systematic, thorough yet nontechnical view of the field by using plain language to explain complex subjects." Chu has definitely struck up the right combination of ingredients. In a field so broad and complex, a well-organized presentation of topics that don't trip an themselves is essential. The use of plain language where possible is also a good choice for this topic because it allows one to absorb topics that are, by nature, not as easy to grasp. For instance, Chapters 6 and 7, which cover retrieval approaches and techniques, an often painstaking topic for many students and teachers is deftly handled with the use of tables that can be used to compare and contrast the various models discussed. I particularly loved Chu's use of Koll's 2000 article from the Bulletin of the American Society for Information Science to explain subject searching at the beginning of Chapter 6, which discusses the differences between browsing and searching. The Koll article uses the task of finding a needle in a haystack as an analogy.
    Weitere Rez. in: Rez. in: nfd 55(2004) H.4, S.252 (D. Lewandowski):"Die Zahl der Bücher zum Thema Information Retrieval ist nicht gering, auch in deutscher Sprache liegen einige Titel vor. Trotzdem soll ein neues (englischsprachiges) Buch zu diesem Thema hier besprochen werden. Dieses zeichnet sich durch eine Kürze (nur etwa 230 Seiten Text) und seine gute Verständlichkeit aus und richtet sich damit bevorzugt an Studenten in den ersten Semestern. Heting Chu unterrichtet seit 1994 an Palmer School of Library and Information Science der Long Island University New York. Dass die Autorin viel Erfahrung in der Vermittlung des Stoffs in ihren Information-Retrieval-Veranstaltungen sammeln konnte, merkt man dem Buch deutlich an. Es ist einer klaren und verständlichen Sprache geschrieben und führt in die Grundlagen der Wissensrepräsentation und des Information Retrieval ein. Das Lehrbuch behandelt diese Themen als Gesamtkomplex und geht damit über den Themenbereich ähnlicher Bücher hinaus, die sich in der Regel auf das Retrieval beschränken. Das Buch ist in zwölf Kapitel gegliedert, wobei das erste Kapitel eine Übersicht über die zu behandelnden Themen gibt und den Leser auf einfache Weise in die Grundbegriffe und die Geschichte des IRR einführt. Neben einer kurzen chronologischen Darstellung der Entwicklung der IRR-Systeme werden auch vier Pioniere des Gebiets gewürdigt: Mortimer Taube, Hans Peter Luhn, Calvin N. Mooers und Gerard Salton. Dies verleiht dem von Studenten doch manchmal als trocken empfundenen Stoff eine menschliche Dimension. Das zweite und dritte Kapitel widmen sich der Wissensrepräsentation, wobei zuerst die grundlegenden Ansätze wie Indexierung, Klassifikation und Abstracting besprochen werden. Darauf folgt die Behandlung von Wissensrepräsentation mittels Metadaten, wobei v.a. neuere Ansätze wie Dublin Core und RDF behandelt werden. Weitere Unterkapitel widmen sich der Repräsentation von Volltexten und von Multimedia-Informationen. Die Stellung der Sprache im IRR wird in einem eigenen Kapitel behandelt. Dabei werden in knapper Form verschiedene Formen des kontrollierten Vokabulars und die wesentlichen Unterscheidungsmerkmale zur natürlichen Sprache erläutert. Die Eignung der beiden Repräsentationsmöglichkeiten für unterschiedliche IRR-Zwecke wird unter verschiedenen Aspekten diskutiert.

Types