Search (78 results, page 1 of 4)

  • × theme_ss:"Visualisierung"
  1. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.05
    0.045657605 = product of:
      0.09131521 = sum of:
        0.064462416 = weight(_text_:science in 3355) [ClassicSimilarity], result of:
          0.064462416 = score(doc=3355,freq=18.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.52385724 = fieldWeight in 3355, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
        0.026852798 = product of:
          0.053705595 = sum of:
            0.053705595 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.053705595 = score(doc=3355,freq=4.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    One of a series of three publications influenced by the travelling exhibit Places & Spaces: Mapping Science, curated by the Cyberinfrastructure for Network Science Center at Indiana University. - Additional materials can be found at http://http://scimaps.org/atlas2. Erweitert durch: Börner, Katy. Atlas of Science: Visualizing What We Know.
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
    LCSH
    Science / Atlases
    Science / Study and teaching / Graphic methods
    Communication in science / Data processing
    Subject
    Science / Atlases
    Science / Study and teaching / Graphic methods
    Communication in science / Data processing
  2. Petrovich, E.: Science mapping and science maps (2021) 0.04
    0.044764705 = product of:
      0.08952941 = sum of:
        0.067190126 = weight(_text_:science in 595) [ClassicSimilarity], result of:
          0.067190126 = score(doc=595,freq=44.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.5460241 = fieldWeight in 595, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=595)
        0.022339288 = product of:
          0.044678576 = sum of:
            0.044678576 = weight(_text_:history in 595) [ClassicSimilarity], result of:
              0.044678576 = score(doc=595,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.20559052 = fieldWeight in 595, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.03125 = fieldNorm(doc=595)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Science maps are visual representations of the structure and dynamics of scholarly knowl­edge. They aim to show how fields, disciplines, journals, scientists, publications, and scientific terms relate to each other. Science mapping is the body of methods and techniques that have been developed for generating science maps. This entry is an introduction to science maps and science mapping. It focuses on the conceptual, theoretical, and methodological issues of science mapping, rather than on the mathematical formulation of science mapping techniques. After a brief history of science mapping, we describe the general procedure for building a science map, presenting the data sources and the methods to select, clean, and pre-process the data. Next, we examine in detail how the most common types of science maps, namely the citation-based and the term-based, are generated. Both are based on networks: the former on the network of publications connected by citations, the latter on the network of terms co-occurring in publications. We review the rationale behind these mapping approaches, as well as the techniques and methods to build the maps (from the extraction of the network to the visualization and enrichment of the map). We also present less-common types of science maps, including co-authorship networks, interlocking editorship networks, maps based on patents' data, and geographic maps of science. Moreover, we consider how time can be represented in science maps to investigate the dynamics of science. We also discuss some epistemological and sociological topics that can help in the interpretation, contextualization, and assessment of science maps. Then, we present some possible applications of science maps in science policy. In the conclusion, we point out why science mapping may be interesting for all the branches of meta-science, from knowl­edge organization to epistemology.
    Footnote
    Beitrag in einem Special issue on 'Science and knowledge organization' mit längeren Überblicken zu wichtigen Begriffen der Wissensorgansiation.
  3. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.03
    0.03372939 = product of:
      0.06745878 = sum of:
        0.035812456 = weight(_text_:science in 2755) [ClassicSimilarity], result of:
          0.035812456 = score(doc=2755,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.2910318 = fieldWeight in 2755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.078125 = fieldNorm(doc=2755)
        0.031646326 = product of:
          0.06329265 = sum of:
            0.06329265 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.06329265 = score(doc=2755,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    1. 2.2016 18:25:22
    Series
    Lecture notes in computer science ; 9398
  4. Minkov, E.; Kahanov, K.; Kuflik, T.: Graph-based recommendation integrating rating history and domain knowledge : application to on-site guidance of museum visitors (2017) 0.03
    0.02869844 = product of:
      0.05739688 = sum of:
        0.017906228 = weight(_text_:science in 3756) [ClassicSimilarity], result of:
          0.017906228 = score(doc=3756,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 3756, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3756)
        0.039490655 = product of:
          0.07898131 = sum of:
            0.07898131 = weight(_text_:history in 3756) [ClassicSimilarity], result of:
              0.07898131 = score(doc=3756,freq=4.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.3634361 = fieldWeight in 3756, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3756)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Visitors to museums and other cultural heritage sites encounter a wealth of exhibits in a variety of subject areas, but can explore only a small number of them. Moreover, there typically exists rich complementary information that can be delivered to the visitor about exhibits of interest, but only a fraction of this information can be consumed during the limited time of the visit. Recommender systems may help visitors to cope with this information overload. Ideally, the recommender system of choice should model user preferences, as well as background knowledge about the museum's environment, considering aspects of physical and thematic relevancy. We propose a personalized graph-based recommender framework, representing rating history and background multi-facet information jointly as a relational graph. A random walk measure is applied to rank available complementary multimedia presentations by their relevancy to a visitor's profile, integrating the various dimensions. We report the results of experiments conducted using authentic data collected at the Hecht museum. An evaluation of multiple graph variants, compared with several popular and state-of-the-art recommendation methods, indicates on advantages of the graph-based approach.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1911-1924
  5. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.03
    0.028102597 = product of:
      0.056205194 = sum of:
        0.0372174 = weight(_text_:science in 3693) [ClassicSimilarity], result of:
          0.0372174 = score(doc=3693,freq=6.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.30244917 = fieldWeight in 3693, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.018987793 = product of:
          0.037975587 = sum of:
            0.037975587 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.037975587 = score(doc=3693,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Generally, Computer Science (CS) classifications are inconsistent in taxonomy strategies. t is necessary to develop CS taxonomy research to combine its historical perspective, its current knowledge and its predicted future trends - including all breakthroughs in information and communication technology. In this paper we have analyzed the ACM Computing Classification System (CCS) by means of visualization maps. The important achievement of current work is an effective visualization of classified documents from the ACM Digital Library. From the technical point of view, the innovation lies in the parallel use of analysis units: (sub)classes and keywords as well as a spherical 3D information surface. We have compared both the thematic and semantic maps of classified documents and results presented in Table 1. Furthermore, the proposed new method is used for content-related evaluation of the original scheme. Summing up: we improved an original ACM classification in the Computer Science domain by means of visualization.
    Date
    22. 7.2010 19:36:46
  6. Soylu, A.; Giese, M.; Jimenez-Ruiz, E.; Kharlamov, E.; Zheleznyakov, D.; Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation (2014) 0.03
    0.027498204 = product of:
      0.05499641 = sum of:
        0.021487473 = weight(_text_:science in 1576) [ClassicSimilarity], result of:
          0.021487473 = score(doc=1576,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.17461908 = fieldWeight in 1576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=1576)
        0.033508934 = product of:
          0.06701787 = sum of:
            0.06701787 = weight(_text_:history in 1576) [ClassicSimilarity], result of:
              0.06701787 = score(doc=1576,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.3083858 = fieldWeight in 1576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1576)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Series
    Communications in computer and information science; 478
  7. Palm, F.: QVIZ : Query and context based visualization of time-spatial cultural dynamics (2007) 0.03
    0.026248364 = product of:
      0.104993455 = sum of:
        0.104993455 = sum of:
          0.06701787 = weight(_text_:history in 1289) [ClassicSimilarity], result of:
            0.06701787 = score(doc=1289,freq=2.0), product of:
              0.21731828 = queryWeight, product of:
                4.6519823 = idf(docFreq=1146, maxDocs=44218)
                0.0467152 = queryNorm
              0.3083858 = fieldWeight in 1289, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.6519823 = idf(docFreq=1146, maxDocs=44218)
                0.046875 = fieldNorm(doc=1289)
          0.037975587 = weight(_text_:22 in 1289) [ClassicSimilarity], result of:
            0.037975587 = score(doc=1289,freq=2.0), product of:
              0.16358867 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0467152 = queryNorm
              0.23214069 = fieldWeight in 1289, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1289)
      0.25 = coord(1/4)
    
    Abstract
    QVIZ will research and create a framework for visualizing and querying archival resources by a time-space interface based on maps and emergent knowledge structures. The framework will also integrate social software, such as wikis, in order to utilize knowledge in existing and new communities of practice. QVIZ will lead to improved information sharing and knowledge creation, easier access to information in a user-adapted context and innovative ways of exploring and visualizing materials over time, between countries and other administrative units. The common European framework for sharing and accessing archival information provided by the QVIZ project will open a considerably larger commercial market based on archival materials as well as a richer understanding of European history.
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  8. Zhu, B.; Chen, H.: Information visualization (2004) 0.02
    0.023195274 = product of:
      0.04639055 = sum of:
        0.0125343595 = weight(_text_:science in 4276) [ClassicSimilarity], result of:
          0.0125343595 = score(doc=4276,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.101861134 = fieldWeight in 4276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
        0.033856187 = product of:
          0.067712374 = sum of:
            0.067712374 = weight(_text_:history in 4276) [ClassicSimilarity], result of:
              0.067712374 = score(doc=4276,freq=6.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.31158158 = fieldWeight in 4276, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4276)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
    Visualization can be classified as scientific visualization, software visualization, or information visualization. Although the data differ, the underlying techniques have much in common. They use the same elements (visual cues) and follow the same rules of combining visual cues to deliver patterns. They all involve understanding human perception (Encarnacao, Foley, Bryson, & Feiner, 1994) and require domain knowledge (Tufte, 1990). Because most decisions are based an unstructured information, such as text documents, Web pages, or e-mail messages, this chapter focuses an the visualization of unstructured textual documents. The chapter reviews information visualization techniques developed over the last decade and examines how they have been applied in different domains. The first section provides the background by describing visualization history and giving overviews of scientific, software, and information visualization as well as the perceptual aspects of visualization. The next section assesses important visualization techniques that convert abstract information into visual objects and facilitate navigation through displays an a computer screen. It also explores information analysis algorithms that can be applied to identify or extract salient visualizable structures from collections of information. Information visualization systems that integrate different types of technologies to address problems in different domains are then surveyed; and we move an to a survey and critique of visualization system evaluation studies. The chapter concludes with a summary and identification of future research directions.
    Source
    Annual review of information science and technology. 39(2005), S.139-177
  9. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.02
    0.020573197 = product of:
      0.041146394 = sum of:
        0.02532323 = weight(_text_:science in 5272) [ClassicSimilarity], result of:
          0.02532323 = score(doc=5272,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.20579056 = fieldWeight in 5272, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5272)
        0.015823163 = product of:
          0.031646326 = sum of:
            0.031646326 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.031646326 = score(doc=5272,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.359-377
  10. Börner, K.; Chen, C.; Boyack, K.W.: Visualizing knowledge domains (2002) 0.02
    0.01863657 = product of:
      0.03727314 = sum of:
        0.017726261 = weight(_text_:science in 4286) [ClassicSimilarity], result of:
          0.017726261 = score(doc=4286,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1440534 = fieldWeight in 4286, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4286)
        0.019546878 = product of:
          0.039093755 = sum of:
            0.039093755 = weight(_text_:history in 4286) [ClassicSimilarity], result of:
              0.039093755 = score(doc=4286,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.1798917 = fieldWeight in 4286, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4286)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This chapter reviews visualization techniques that can be used to map the ever-growing domain structure of scientific disciplines and to support information retrieval and classification. In contrast to the comprehensive surveys conducted in traditional fashion by Howard White and Katherine McCain (1997, 1998), this survey not only reviews emerging techniques in interactive data analysis and information visualization, but also depicts the bibliographical structure of the field itself. The chapter starts by reviewing the history of knowledge domain visualization. We then present a general process flow for the visualization of knowledge domains and explain commonly used techniques. In order to visualize the domain reviewed by this chapter, we introduce a bibliographic data set of considerable size, which includes articles from the citation analysis, bibliometrics, semantics, and visualization literatures. Using tutorial style, we then apply various algorithms to demonstrate the visualization effectsl produced by different approaches and compare the results. The domain visualizations reveal the relationships within and between the four fields that together constitute the focus of this chapter. We conclude with a general discussion of research possibilities. Painting a "big picture" of scientific knowledge has long been desirable for a variety of reasons. Traditional approaches are brute forcescholars must sort through mountains of literature to perceive the outlines of their field. Obviously, this is time-consuming, difficult to replicate, and entails subjective judgments. The task is enormously complex. Sifting through recently published documents to find those that will later be recognized as important is labor intensive. Traditional approaches struggle to keep up with the pace of information growth. In multidisciplinary fields of study it is especially difficult to maintain an overview of literature dynamics. Painting the big picture of an everevolving scientific discipline is akin to the situation described in the widely known Indian legend about the blind men and the elephant. As the story goes, six blind men were trying to find out what an elephant looked like. They touched different parts of the elephant and quickly jumped to their conclusions. The one touching the body said it must be like a wall; the one touching the tail said it was like a snake; the one touching the legs said it was like a tree trunk, and so forth. But science does not stand still; the steady stream of new scientific literature creates a continuously changing structure. The resulting disappearance, fusion, and emergence of research areas add another twist to the tale-it is as if the elephant is running and dynamically changing its shape. Domain visualization, an emerging field of study, is in a similar situation. Relevant literature is spread across disciplines that have traditionally had few connections. Researchers examining the domain from a particular discipline cannot possibly have an adequate understanding of the whole. As noted by White and McCain (1997), the new generation of information scientists is technically driven in its efforts to visualize scientific disciplines. However, limited progress has been made in terms of connecting pioneers' theories and practices with the potentialities of today's enabling technologies. If the difference between past and present generations lies in the power of available technologies, what they have in common is the ultimate goal-to reveal the development of scientific knowledge.
    Source
    Annual review of information science and technology. 37(2003), S.179-258
  11. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.02
    0.016864695 = product of:
      0.03372939 = sum of:
        0.017906228 = weight(_text_:science in 4573) [ClassicSimilarity], result of:
          0.017906228 = score(doc=4573,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 4573, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.015823163 = product of:
          0.031646326 = sum of:
            0.031646326 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.031646326 = score(doc=4573,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    9.12.2018 16:22:25
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.12, S.1428-1445
  12. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.02
    0.016864695 = product of:
      0.03372939 = sum of:
        0.017906228 = weight(_text_:science in 4641) [ClassicSimilarity], result of:
          0.017906228 = score(doc=4641,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.1455159 = fieldWeight in 4641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4641)
        0.015823163 = product of:
          0.031646326 = sum of:
            0.031646326 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
              0.031646326 = score(doc=4641,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.19345059 = fieldWeight in 4641, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Studies on the state and structure of digital knowledge concerning science generally relate to macro and meso scales. Supported by visualizations, these studies can deliver knowledge about emerging scientific fields or collaboration between countries, scientific centers, or groups of researchers. Analyses of individual activities or single scientific career paths are rarely presented and discussed. The authors decided to fill this gap and developed a web application for visualizing the scientific output of particular researchers. This free software based on bibliographic data from local databases, provides six layouts for analysis. Researchers can see the dynamic characteristics of their own writing activity, the time and place of publication, and the thematic scope of research problems. They can also identify cooperation networks, and consequently, study the dependencies and regularities in their own scientific activity. The current article presents the results of a study of the application's usability and functionality as well as attempts to define different user groups. A survey about the interface was sent to select researchers employed at Nicolaus Copernicus University. The results were used to answer the question as to whether such a specialized visualization tool can significantly augment the individual information space of the contemporary researcher.
    Date
    21.12.2018 17:22:13
  13. Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F.: Science mapping software tools : review, analysis, and cooperative study among tools (2011) 0.01
    0.014324983 = product of:
      0.05729993 = sum of:
        0.05729993 = weight(_text_:science in 4486) [ClassicSimilarity], result of:
          0.05729993 = score(doc=4486,freq=8.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.4656509 = fieldWeight in 4486, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0625 = fieldNorm(doc=4486)
      0.25 = coord(1/4)
    
    Abstract
    Science mapping aims to build bibliometric maps that describe how specific disciplines, scientific domains, or research fields are conceptually, intellectually, and socially structured. Different techniques and software tools have been proposed to carry out science mapping analysis. The aim of this article is to review, analyze, and compare some of these software tools, taking into account aspects such as the bibliometric techniques available and the different kinds of analysis.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.7, S.1382-1402
  14. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.01
    0.014051299 = product of:
      0.028102597 = sum of:
        0.0186087 = weight(_text_:science in 3035) [ClassicSimilarity], result of:
          0.0186087 = score(doc=3035,freq=6.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.15122458 = fieldWeight in 3035, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3035)
        0.009493897 = product of:
          0.018987793 = sum of:
            0.018987793 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
              0.018987793 = score(doc=3035,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.116070345 = fieldWeight in 3035, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.
    Dr Howe and his colleagues do, however, believe that the study of diagrams can result in new insights. A figure showing new metabolic pathways in a cell, for example, may summarise hundreds of experiments. Since illustrations can convey important scientific concepts in this way, they think that browsing through related figures from different papers may help researchers come up with new theories. As Dr Howe puts it, "the unit of scientific currency is closer to the figure than to the paper." With this thought in mind, the team have created a website (viziometrics.org (http://viziometrics.org/) ) where the millions of images sorted by their program can be searched using key words. Their next plan is to extract the information from particular types of scientific figure, to create comprehensive "super" figures: a giant network of all the known chemical processes in a cell for example, or the best-available tree of life. At just one such superfigure per paper, though, the citation records of articles containing such all-embracing diagrams may very well undermine the correlation that prompted their creation in the first place. Call it the ultimate marriage of chart and science.
    Footnote
    Vgl.: http://www.economist.com/news/science-and-technology/21700620-surprisingly-simple-test-check-research-papers-errors-come-again.
  15. Kocijan, K.: Visualizing natural language resources (2015) 0.01
    0.012661615 = product of:
      0.05064646 = sum of:
        0.05064646 = weight(_text_:science in 2995) [ClassicSimilarity], result of:
          0.05064646 = score(doc=2995,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.41158113 = fieldWeight in 2995, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.078125 = fieldNorm(doc=2995)
      0.25 = coord(1/4)
    
    Source
    Re:inventing information science in the networked society: Proceedings of the 14th International Symposium on Information Science, Zadar/Croatia, 19th-21st May 2015. Eds.: F. Pehar, C. Schloegl u. C. Wolff
  16. Samoylenko, I.; Chao, T.-C.; Liu, W.-C.; Chen, C.-M.: Visualizing the scientific world and its evolution (2006) 0.01
    0.012011863 = product of:
      0.048047453 = sum of:
        0.048047453 = weight(_text_:science in 5911) [ClassicSimilarity], result of:
          0.048047453 = score(doc=5911,freq=10.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.39046016 = fieldWeight in 5911, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=5911)
      0.25 = coord(1/4)
    
    Abstract
    We propose an approach to visualizing the scientific world and its evolution by constructing minimum spanning trees (MSTs) and a two-dimensional map of scientific journals using the database of the Science Citation Index (SCI) during 1994-2001. The structures of constructed MSTs are consistent with the sorting of SCI categories. The map of science is constructed based on our MST results. Such a map shows the relation among various knowledge clusters and their citation properties. The temporal evolution of the scientific world can also be delineated in the map. In particular, this map clearly shows a linear structure of the scientific world, which contains three major domains including physical sciences, life sciences, and medical sciences. The interaction of various knowledge fields can be clearly seen from this scientific world map. This approach can be applied to various levels of knowledge domains.
    Object
    Science Citation Index
    Map of Science
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.11, S.1461-1469
  17. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.011172541 = product of:
      0.022345083 = sum of:
        0.016015818 = weight(_text_:science in 1789) [ClassicSimilarity], result of:
          0.016015818 = score(doc=1789,freq=10.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.13015339 = fieldWeight in 1789, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.006329265 = product of:
          0.01265853 = sum of:
            0.01265853 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.01265853 = score(doc=1789,freq=2.0), product of:
                0.16358867 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0467152 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  18. Wen, B.; Horlings, E.; Zouwen, M. van der; Besselaar, P. van den: Mapping science through bibliometric triangulation : an experimental approach applied to water research (2017) 0.01
    0.01096528 = product of:
      0.04386112 = sum of:
        0.04386112 = weight(_text_:science in 3437) [ClassicSimilarity], result of:
          0.04386112 = score(doc=3437,freq=12.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.3564397 = fieldWeight in 3437, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3437)
      0.25 = coord(1/4)
    
    Abstract
    The idea of constructing science maps based on bibliographic data has intrigued researchers for decades, and various techniques have been developed to map the structure of research disciplines. Most science mapping studies use a single method. However, as research fields have various properties, a valid map of a field should actually be composed of a set of maps derived from a series of investigations using different methods. That leads to the question of what can be learned from a combination-triangulation-of these different science maps. In this paper we propose a method for triangulation, using the example of water science. We combine three different mapping approaches: journal-journal citation relations (JJCR), shared author keywords (SAK), and title word-cited reference co-occurrence (TWRC). Our results demonstrate that triangulation of JJCR, SAK, and TWRC produces a more comprehensive picture than each method applied individually. The outcomes from the three different approaches can be associated with each other and systematically interpreted to provide insights into the complex multidisciplinary structure of the field of water research.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.724-738
  19. Pejtersen, A.M.: Implications of users' value perception for the design of a bibliographic retrieval system (1986) 0.01
    0.010743736 = product of:
      0.042974945 = sum of:
        0.042974945 = weight(_text_:science in 2961) [ClassicSimilarity], result of:
          0.042974945 = score(doc=2961,freq=2.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.34923816 = fieldWeight in 2961, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.09375 = fieldNorm(doc=2961)
      0.25 = coord(1/4)
    
    Source
    Empirical foundation of information and software science. Ed.: J.C. Agarwal u. P. Zunde
  20. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.01
    0.010743736 = product of:
      0.042974945 = sum of:
        0.042974945 = weight(_text_:science in 3704) [ClassicSimilarity], result of:
          0.042974945 = score(doc=3704,freq=8.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.34923816 = fieldWeight in 3704, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
      0.25 = coord(1/4)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
    Object
    Science Citation Index
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1622-1634

Authors

Years

Languages

  • e 68
  • d 9
  • a 1
  • More… Less…

Types

  • a 64
  • m 9
  • el 4
  • x 4
  • s 2
  • b 1
  • More… Less…