Search (2 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × classification_ss:"06.74 (Informationssysteme)"
  1. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.01
    0.006981028 = product of:
      0.027924111 = sum of:
        0.027924111 = product of:
          0.055848222 = sum of:
            0.055848222 = weight(_text_:history in 2257) [ClassicSimilarity], result of:
              0.055848222 = score(doc=2257,freq=2.0), product of:
                0.21731828 = queryWeight, product of:
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0467152 = queryNorm
                0.25698814 = fieldWeight in 2257, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.6519823 = idf(docFreq=1146, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2257)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the book is organised in to four main parts: Part I begins with the vital question concerning the role of information within the context of the larger theoretical debate in the literature. Part II provides a critical examination of the nature of data taxonomy from the main perspectives of culture, society, nature and the mind. Part III constructively invesitgates the world of information network from the main perspectives of culture, society, nature and the mind. Part IV proposes six main theses in the authors synthetic theory of information architecture, namely, (a) the first thesis on the simpleness-complicatedness principle, (b) the second thesis on the exactness-vagueness principle (c) the third thesis on the slowness-quickness principle (d) the fourth thesis on the order-chaos principle, (e) the fifth thesis on the symmetry-asymmetry principle, and (f) the sixth thesis on the post-human stage.
  2. Arp, R.; Smith, B.; Spear, A.D.: Building ontologies with basic formal ontology (2015) 0.01
    0.0050646462 = product of:
      0.020258585 = sum of:
        0.020258585 = weight(_text_:science in 3444) [ClassicSimilarity], result of:
          0.020258585 = score(doc=3444,freq=4.0), product of:
            0.12305341 = queryWeight, product of:
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.0467152 = queryNorm
            0.16463245 = fieldWeight in 3444, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6341193 = idf(docFreq=8627, maxDocs=44218)
              0.03125 = fieldNorm(doc=3444)
      0.25 = coord(1/4)
    
    Abstract
    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now used by over one hundred ontology projects around the world, and offers examples of domain ontologies that utilize BFO. The book also describes Web Ontology Language (OWL), a common framework for Semantic Web technologies. Throughout, the book provides concrete recommendations for the design and construction of domain ontologies.