Search (6 results, page 1 of 1)

  • × theme_ss:"Multimedia"
  1. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.07
    0.07434206 = product of:
      0.14868411 = sum of:
        0.03972433 = weight(_text_:storage in 150) [ClassicSimilarity], result of:
          0.03972433 = score(doc=150,freq=4.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.21284549 = fieldWeight in 150, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.025970506 = weight(_text_:retrieval in 150) [ClassicSimilarity], result of:
          0.025970506 = score(doc=150,freq=18.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.25065678 = fieldWeight in 150, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.023640474 = weight(_text_:systems in 150) [ClassicSimilarity], result of:
          0.023640474 = score(doc=150,freq=14.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.22458525 = fieldWeight in 150, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.05934879 = sum of:
          0.039254002 = weight(_text_:etc in 150) [ClassicSimilarity], result of:
            0.039254002 = score(doc=150,freq=4.0), product of:
              0.18552645 = queryWeight, product of:
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.034252144 = queryNorm
              0.2115817 = fieldWeight in 150, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
          0.020094791 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
            0.020094791 = score(doc=150,freq=6.0), product of:
              0.119945176 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.034252144 = queryNorm
              0.16753313 = fieldWeight in 150, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
      0.5 = coord(4/8)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    Semantic web technologies are explained, and ontology representation is emphasized. There is an excellent summary of the fundamental theory behind applying a knowledge-engineering approach to vision problems. This summary represents the concept of the semantic web and multimedia content analysis. A definition of the fuzzy knowledge representation that can be used for realization in multimedia content applications has been provided, with a comprehensive analysis. The second part of the book introduces the multimedia content analysis approaches and applications. In addition, some examples of methods applicable to multimedia content analysis are presented. Multimedia content analysis is a very diverse field and concerns many other research fields at the same time; this creates strong diversity issues, as everything from low-level features (e.g., colors, DCT coefficients, motion vectors, etc.) up to the very high and semantic level (e.g., Object, Events, Tracks, etc.) are involved. The second part includes topics on structure identification (e.g., shot detection for video sequences), and object-based video indexing. These conventional analysis methods are supplemented by results on semantic multimedia analysis, including three detailed chapters on the development and use of knowledge models for automatic multimedia analysis. Starting from object-based indexing and continuing with machine learning, these three chapters are very logically organized. Because of the diversity of this research field, including several chapters of recent research results is not sufficient to cover the state of the art of multimedia. The editors of the book should write an introductory chapter about multimedia content analysis approaches, basic problems, and technical issues and challenges, and try to survey the state of the art of the field and thus introduce the field to the reader.
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
    LCSH
    Multimedia systems
    Information storage and retrieval systems
    RSWK
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Subject
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Multimedia systems
    Information storage and retrieval systems
  2. Oberhauser, O.: Multimedia information storage and retrieval using optical disc technology : potential for library and information services (1990) 0.07
    0.071102485 = product of:
      0.18960664 = sum of:
        0.12561937 = weight(_text_:storage in 1543) [ClassicSimilarity], result of:
          0.12561937 = score(doc=1543,freq=10.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.6730765 = fieldWeight in 1543, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1543)
        0.038714543 = weight(_text_:retrieval in 1543) [ClassicSimilarity], result of:
          0.038714543 = score(doc=1543,freq=10.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.37365708 = fieldWeight in 1543, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1543)
        0.02527273 = weight(_text_:systems in 1543) [ClassicSimilarity], result of:
          0.02527273 = score(doc=1543,freq=4.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.24009174 = fieldWeight in 1543, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1543)
      0.375 = coord(3/8)
    
    LCSH
    Optical storage devices
    Information storage and retrieval systems
    RSWK
    Information Retrieval / CD-ROM (BVB)
    Subject
    Information Retrieval / CD-ROM (BVB)
    Optical storage devices
    Information storage and retrieval systems
  3. Klemme, M.; Maurer, H.; Schneider, A.: Glimpses at the future of networked hypermedia systems (1996) 0.06
    0.062667005 = product of:
      0.16711201 = sum of:
        0.089885905 = weight(_text_:storage in 6156) [ClassicSimilarity], result of:
          0.089885905 = score(doc=6156,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.48161435 = fieldWeight in 6156, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.0625 = fieldNorm(doc=6156)
        0.027701873 = weight(_text_:retrieval in 6156) [ClassicSimilarity], result of:
          0.027701873 = score(doc=6156,freq=2.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.26736724 = fieldWeight in 6156, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=6156)
        0.049524236 = weight(_text_:systems in 6156) [ClassicSimilarity], result of:
          0.049524236 = score(doc=6156,freq=6.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.4704818 = fieldWeight in 6156, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=6156)
      0.375 = coord(3/8)
    
    Abstract
    Discusses the current state of the art in the field of large-scale networked hypermedia systems. Identifies ways in which the future generation of networked hypermedia systems will differ from the present generation. Surveys: type; preparation, storage, and interchange of hypermedia documents; security, costs and copyright; navigation, search and retrieval; usability; and hypermedia as a technology of integration
  4. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.05
    0.0544417 = product of:
      0.14517787 = sum of:
        0.07944866 = weight(_text_:storage in 2801) [ClassicSimilarity], result of:
          0.07944866 = score(doc=2801,freq=4.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.42569098 = fieldWeight in 2801, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
        0.029988158 = weight(_text_:retrieval in 2801) [ClassicSimilarity], result of:
          0.029988158 = score(doc=2801,freq=6.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.28943354 = fieldWeight in 2801, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
        0.03574104 = weight(_text_:systems in 2801) [ClassicSimilarity], result of:
          0.03574104 = score(doc=2801,freq=8.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.339541 = fieldWeight in 2801, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
      0.375 = coord(3/8)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
    LCSH
    Multimedia systems
    Information storage and retrieval systems
    Subject
    Multimedia systems
    Information storage and retrieval systems
  5. Plotkin, R.C.; Schwartz, M.S.: Data modeling for news clip archive : a prototype solution (1997) 0.05
    0.04700025 = product of:
      0.12533401 = sum of:
        0.067414425 = weight(_text_:storage in 1259) [ClassicSimilarity], result of:
          0.067414425 = score(doc=1259,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.36121076 = fieldWeight in 1259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.046875 = fieldNorm(doc=1259)
        0.020776404 = weight(_text_:retrieval in 1259) [ClassicSimilarity], result of:
          0.020776404 = score(doc=1259,freq=2.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.20052543 = fieldWeight in 1259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1259)
        0.037143175 = weight(_text_:systems in 1259) [ClassicSimilarity], result of:
          0.037143175 = score(doc=1259,freq=6.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.35286134 = fieldWeight in 1259, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1259)
      0.375 = coord(3/8)
    
    Abstract
    Film, videotape and multimedia archive systems must address the issues of editing, authoring and searching at the media (i.e. tape) or sub media (i.e. scene) level in addition to the traditional inventory management capabilities associated with the physical media. This paper describes a prototype of a database design for the storage, search and retrieval of multimedia and its related information. It also provides a process by which legacy data can be imported to this schema. The Continuous Media Index, or Comix system is the name of the prototype. An implementation of such a digital library solution incorporates multimedia objects, hierarchical relationships and timecode in addition to traditional attribute data. Present video and multimedia archive systems are easily migrated to this architecture. Comix was implemented for a videotape archiving system. It was written for, and implemented using IBM Digital Library version 1.0. A derivative of Comix is currently in development for customer specific applications. Principles of the Comix design as well as the importation methods are not specific to the underlying systems used.
  6. Christel, M.G.: Automated metadata in multimedia information systems : creation, refinement, use in surrogates, and evaluation (2009) 0.04
    0.04365186 = product of:
      0.11640496 = sum of:
        0.05617869 = weight(_text_:storage in 3086) [ClassicSimilarity], result of:
          0.05617869 = score(doc=3086,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.30100897 = fieldWeight in 3086, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3086)
        0.024485227 = weight(_text_:retrieval in 3086) [ClassicSimilarity], result of:
          0.024485227 = score(doc=3086,freq=4.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.23632148 = fieldWeight in 3086, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3086)
        0.03574104 = weight(_text_:systems in 3086) [ClassicSimilarity], result of:
          0.03574104 = score(doc=3086,freq=8.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.339541 = fieldWeight in 3086, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3086)
      0.375 = coord(3/8)
    
    Abstract
    Improvements in network bandwidth along with dramatic drops in digital storage and processing costs have resulted in the explosive growth of multimedia (combinations of text, image, audio, and video) resources on the Internet and in digital repositories. A suite of computer technologies delivering speech, image, and natural language understanding can automatically derive descriptive metadata for such resources. Difficulties for end users ensue, however, with the tremendous volume and varying quality of automated metadata for multimedia information systems. This lecture surveys automatic metadata creation methods for dealing with multimedia information resources, using broadcast news, documentaries, and oral histories as examples. Strategies for improving the utility of such metadata are discussed, including computationally intensive approaches, leveraging multimodal redundancy, folding in context, and leaving precision-recall tradeoffs under user control. Interfaces building from automatically generated metadata are presented, illustrating the use of video surrogates in multimedia information systems. Traditional information retrieval evaluation is discussed through the annual National Institute of Standards and Technology TRECVID forum, with experiments on exploratory search extending the discussion beyond fact-finding to broader, longer term search activities of learning, analysis, synthesis, and discovery.
    Content
    Table of Contents: Evolution of Multimedia Information Systems: 1990-2008 / Survey of Automatic Metadata Creation Methods / Refinement of Automatic Metadata / Multimedia Surrogates / End-User Utility for Metadata and Surrogates: Effectiveness, Efficiency, and Satisfaction
    Series
    Synthesis lectures on information concepts, retrieval & services

Types