Search (10 results, page 1 of 1)

  • × theme_ss:"Suchmaschinen"
  1. From 'storage and retrieval systems' to 'search engines' : text retrieval in evolution (1998) 0.10
    0.10346115 = product of:
      0.2758964 = sum of:
        0.15730032 = weight(_text_:storage in 7016) [ClassicSimilarity], result of:
          0.15730032 = score(doc=7016,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.8428251 = fieldWeight in 7016, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.109375 = fieldNorm(doc=7016)
        0.06855863 = weight(_text_:retrieval in 7016) [ClassicSimilarity], result of:
          0.06855863 = score(doc=7016,freq=4.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.6617001 = fieldWeight in 7016, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=7016)
        0.050037455 = weight(_text_:systems in 7016) [ClassicSimilarity], result of:
          0.050037455 = score(doc=7016,freq=2.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.47535738 = fieldWeight in 7016, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.109375 = fieldNorm(doc=7016)
      0.375 = coord(3/8)
    
  2. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.06
    0.057544447 = product of:
      0.115088895 = sum of:
        0.055614065 = weight(_text_:storage in 2752) [ClassicSimilarity], result of:
          0.055614065 = score(doc=2752,freq=4.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.29798368 = fieldWeight in 2752, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.02968676 = weight(_text_:retrieval in 2752) [ClassicSimilarity], result of:
          0.02968676 = score(doc=2752,freq=12.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.28652456 = fieldWeight in 2752, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.021666853 = weight(_text_:systems in 2752) [ClassicSimilarity], result of:
          0.021666853 = score(doc=2752,freq=6.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.20583579 = fieldWeight in 2752, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.008121212 = product of:
          0.016242424 = sum of:
            0.016242424 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
              0.016242424 = score(doc=2752,freq=2.0), product of:
                0.119945176 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034252144 = queryNorm
                0.1354154 = fieldWeight in 2752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2752)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
    LCSH
    Information storage and retrieval
    User interfaces (Computer systems)
    Subject
    Information storage and retrieval
    User interfaces (Computer systems)
  3. Das, A.; Jain, A.: Indexing the World Wide Web : the journey so far (2012) 0.04
    0.041113295 = product of:
      0.10963546 = sum of:
        0.067414425 = weight(_text_:storage in 95) [ClassicSimilarity], result of:
          0.067414425 = score(doc=95,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.36121076 = fieldWeight in 95, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.046875 = fieldNorm(doc=95)
        0.020776404 = weight(_text_:retrieval in 95) [ClassicSimilarity], result of:
          0.020776404 = score(doc=95,freq=2.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.20052543 = fieldWeight in 95, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=95)
        0.021444622 = weight(_text_:systems in 95) [ClassicSimilarity], result of:
          0.021444622 = score(doc=95,freq=2.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.2037246 = fieldWeight in 95, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=95)
      0.375 = coord(3/8)
    
    Abstract
    In this chapter, the authors describe the key indexing components of today's web search engines. As the World Wide Web has grown, the systems and methods for indexing have changed significantly. The authors present the data structures used, the features extracted, the infrastructure needed, and the options available for designing a brand new search engine. Techniques are highlighted that improve relevance of results, discuss trade-offs to best utilize machine resources, and cover distributed processing concepts in this context. In particular, the authors delve into the topics of indexing phrases instead of terms, storage in memory vs. on disk, and data partitioning. Some thoughts on information organization for the newly emerging data-forms conclude the chapter.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  4. Croft, W.B.; Metzler, D.; Strohman, T.: Search engines : information retrieval in practice (2010) 0.04
    0.040259786 = product of:
      0.16103914 = sum of:
        0.0953384 = weight(_text_:storage in 2605) [ClassicSimilarity], result of:
          0.0953384 = score(doc=2605,freq=4.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.51082915 = fieldWeight in 2605, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.046875 = fieldNorm(doc=2605)
        0.065700755 = weight(_text_:retrieval in 2605) [ClassicSimilarity], result of:
          0.065700755 = score(doc=2605,freq=20.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.63411707 = fieldWeight in 2605, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2605)
      0.25 = coord(2/8)
    
    Abstract
    For introductory information retrieval courses at the undergraduate and graduate level in computer science, information science and computer engineering departments. Written by a leader in the field of information retrieval, Search Engines: Information Retrieval in Practice, is designed to give undergraduate students the understanding and tools they need to evaluate, compare and modify search engines. Coverage of the underlying IR and mathematical models reinforce key concepts. The book's numerous programming exercises make extensive use of Galago, a Java-based open source search engine. SUPPLEMENTS / Extensive lecture slides (in PDF and PPT format) / Solutions to selected end of chapter problems (Instructors only) / Test collections for exercises / Galago search engine
    LCSH
    Information retrieval
    Information Storage and Retrieval
    RSWK
    Suchmaschine / Information Retrieval
    Subject
    Suchmaschine / Information Retrieval
    Information retrieval
    Information Storage and Retrieval
  5. Next generation search engines : advanced models for information retrieval (2012) 0.04
    0.035250776 = product of:
      0.09400207 = sum of:
        0.03972433 = weight(_text_:storage in 357) [ClassicSimilarity], result of:
          0.03972433 = score(doc=357,freq=4.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.21284549 = fieldWeight in 357, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.03239091 = weight(_text_:retrieval in 357) [ClassicSimilarity], result of:
          0.03239091 = score(doc=357,freq=28.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.31262395 = fieldWeight in 357, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.021886826 = weight(_text_:systems in 357) [ClassicSimilarity], result of:
          0.021886826 = score(doc=357,freq=12.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.20792553 = fieldWeight in 357, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.375 = coord(3/8)
    
    Abstract
    The main goal of this book is to transfer new research results from the fields of advanced computer sciences and information science to the design of new search engines. The readers will have a better idea of the new trends in applied research. The achievement of relevant, organized, sorted, and workable answers- to name but a few - from a search is becoming a daily need for enterprises and organizations, and, to a greater extent, for anyone. It does not consist of getting access to structural information as in standard databases; nor does it consist of searching information strictly by way of a combination of key words. It goes far beyond that. Whatever its modality, the information sought should be identified by the topics it contains, that is to say by its textual, audio, video or graphical contents. This is not a new issue. However, recent technological advances have completely changed the techniques being used. New Web technologies, the emergence of Intranet systems and the abundance of information on the Internet have created the need for efficient search and information access tools.
    Recent technological progress in computer science, Web technologies, and constantly evolving information available on the Internet has drastically changed the landscape of search and access to information. Web search has significantly evolved in recent years. In the beginning, web search engines such as Google and Yahoo! were only providing search service over text documents. Aggregated search was one of the first steps to go beyond text search, and was the beginning of a new era for information seeking and retrieval. These days, new web search engines support aggregated search over a number of vertices, and blend different types of documents (e.g., images, videos) in their search results. New search engines employ advanced techniques involving machine learning, computational linguistics and psychology, user interaction and modeling, information visualization, Web engineering, artificial intelligence, distributed systems, social networks, statistical analysis, semantic analysis, and technologies over query sessions. Documents no longer exist on their own; they are connected to other documents, they are associated with users and their position in a social network, and they can be mapped onto a variety of ontologies. Similarly, retrieval tasks have become more interactive and are solidly embedded in a user's geospatial, social, and historical context. It is conjectured that new breakthroughs in information retrieval will not come from smarter algorithms that better exploit existing information sources, but from new retrieval algorithms that can intelligently use and combine new sources of contextual metadata.
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
    Content
    Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
    Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
    LCSH
    Information retrieval
    Information retrieval / Research
    Information storage and retrieval systems / Research
    User interfaces (Computer systems)
    Subject
    Information retrieval
    Information retrieval / Research
    Information storage and retrieval systems / Research
    User interfaces (Computer systems)
  6. Liu, Y.; Zhang, M.; Cen, R.; Ru, L.; Ma, S.: Data cleansing for Web information retrieval using query independent features (2007) 0.03
    0.025496587 = product of:
      0.10198635 = sum of:
        0.05617869 = weight(_text_:storage in 607) [ClassicSimilarity], result of:
          0.05617869 = score(doc=607,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.30100897 = fieldWeight in 607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.0390625 = fieldNorm(doc=607)
        0.045807663 = weight(_text_:retrieval in 607) [ClassicSimilarity], result of:
          0.045807663 = score(doc=607,freq=14.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.442117 = fieldWeight in 607, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=607)
      0.25 = coord(2/8)
    
    Abstract
    Understanding what kinds of Web pages are the most useful for Web search engine users is a critical task in Web information retrieval (IR). Most previous works used hyperlink analysis algorithms to solve this problem. However, little research has been focused on query-independent Web data cleansing for Web IR. In this paper, we first provide analysis of the differences between retrieval target pages and ordinary ones based on more than 30 million Web pages obtained from both the Text Retrieval Conference (TREC) and a widely used Chinese search engine, SOGOU (www.sogou.com). We further propose a learning-based data cleansing algorithm for reducing Web pages that are unlikely to be useful for user requests. We found that there exists a large proportion of low-quality Web pages in both the English and the Chinese Web page corpus, and retrieval target pages can be identified using query-independent features and cleansing algorithms. The experimental results showed that our algorithm is effective in reducing a large portion of Web pages with a small loss in retrieval target pages. It makes it possible for Web IR tools to meet a large fraction of users' needs with only a small part of pages on the Web. These results may help Web search engines make better use of their limited storage and computation resources to improve search performance.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
  7. Morville, P.: Ambient findability : what we find changes who we become (2005) 0.02
    0.024704657 = product of:
      0.065879084 = sum of:
        0.031779464 = weight(_text_:storage in 312) [ClassicSimilarity], result of:
          0.031779464 = score(doc=312,freq=4.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.17027639 = fieldWeight in 312, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.015625 = fieldNorm(doc=312)
        0.023990527 = weight(_text_:retrieval in 312) [ClassicSimilarity], result of:
          0.023990527 = score(doc=312,freq=24.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.23154683 = fieldWeight in 312, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.015625 = fieldNorm(doc=312)
        0.010109092 = weight(_text_:systems in 312) [ClassicSimilarity], result of:
          0.010109092 = score(doc=312,freq=4.0), product of:
            0.10526281 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.034252144 = queryNorm
            0.096036695 = fieldWeight in 312, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.015625 = fieldNorm(doc=312)
      0.375 = coord(3/8)
    
    Footnote
    Das zweite Kapitel ("A Brief History of Wayfinding") beschreibt, wie Menschen sich in Umgebungen zurechtfinden. Dies ist insofern interessant, als hier nicht erst bei Informationssystemen oder dem WWW begonnen wird, sondern allgemeine Erkenntnisse beispielsweise über die Orientierung in natürlichen Umgebungen präsentiert werden. Viele typische Verhaltensweisen der Nutzer von Informationssystemen können so erklärt werden. So interessant dieses Thema allerdings ist, wirkt das Kapitel leider doch nur wie eine Zusammenstellung von Informationen aus zweiter Hand. Offensichtlich ist, dass Morville nicht selbst an diesen Themen geforscht hat, sondern die Ergebnisse (wenn auch auf ansprechende Weise) zusammengeschrieben hat. Dieser Eindruck bestätigt sich auch in weiteren Kapiteln: Ein flüssig geschriebener Text, der es jedoch an einigen Stellen an Substanz fehlen lässt. Kapitel drei, "Information Interaction" beginnt mit einem Rückgriff auf Calvin Mooers zentrale Aussage aus dem Jahre 1959: "An information retrieval system will tend not to be used whenever it is more painful and troublesome for a customer to have information than for him not to have it." In der Tat sollte man sich dies bei der Erstellung von Informationssystemen immer vergegenwärtigen; die Reihe der Systeme, die gerade an dieser Hürde gescheitert sind, ist lang. Das weitere Kapitel führt in einige zentrale Konzepte der Informationswissenschaft (Definition des Begriffs Information, Erläuterung des Information Retrieval, Wissensrepräsentation, Information Seeking Behaviour) ein, allerdings ohne jeden Anspruch auf Vollständigkeit. Es wirkt vielmehr so, dass der Autor sich die gerade für sein Anliegen passenden Konzepte auswählt und konkurrierende Ansätze beiseite lässt. Nur ein Beispiel: Im Abschnitt "Information Interaction" wird relativ ausführlich das Konzept des Berrypicking nach Marcia J. Bates präsentiert, allerdings wird es geradezu als exklusiv verkauft, was es natürlich bei weitem nicht ist. Natürlich kann es nicht Aufgabe dieses Buchs sein, einen vollständigen Überblick über alle Theorien des menschlichen Suchverhaltens zu geben (dies ist an anderer Stelle vorbildlich geleistet worden'), aber doch wenigstens der Hinweis auf einige zentrale Ansätze wäre angebracht gewesen. Spätestens in diesem Kapitel wird klar, dass das Buch sich definitiv nicht an Informationswissenschaftler wendet, die auf der einen Seite mit den grundlegenden Themen vertraut sein dürften, andererseits ein wenig mehr Tiefgang erwarten würden. Also stellt sich die Frage - und diese ist zentral für die Bewertung des gesamten Werks.
    LCSH
    Information storage and retrieval systems
    RSWK
    Information Retrieval (GBV)
    Information Retrieval / Ubiquitous Computing (GBV)
    Information Retrieval / Datenbanksystem / Suchmaschine (GBV)
    Information Retrieval / Datenbanksystem (BVB)
    Subject
    Information Retrieval (GBV)
    Information Retrieval / Ubiquitous Computing (GBV)
    Information Retrieval / Datenbanksystem / Suchmaschine (GBV)
    Information Retrieval / Datenbanksystem (BVB)
    Information storage and retrieval systems
  8. Roux, M.: Metadata for search engines : what can be learned from e-Sciences? (2012) 0.02
    0.024199175 = product of:
      0.0967967 = sum of:
        0.067414425 = weight(_text_:storage in 96) [ClassicSimilarity], result of:
          0.067414425 = score(doc=96,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.36121076 = fieldWeight in 96, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.046875 = fieldNorm(doc=96)
        0.029382274 = weight(_text_:retrieval in 96) [ClassicSimilarity], result of:
          0.029382274 = score(doc=96,freq=4.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.2835858 = fieldWeight in 96, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=96)
      0.25 = coord(2/8)
    
    Abstract
    E-sciences are data-intensive sciences that make a large use of the Web to share, collect, and process data. In this context, primary scientific data is becoming a new challenging issue as data must be extensively described (1) to account for empiric conditions and results that allow interpretation and/or analyses and (2) to be understandable by computers used for data storage and information retrieval. With this respect, metadata is a focal point whatever it is considered from the point of view of the user to visualize and exploit data as well as this of the search tools to find and retrieve information. Numerous disciplines are concerned with the issues of describing complex observations and addressing pertinent knowledge. In this paper, similarities and differences in data description and exploration strategies among disciplines in e-sciences are examined.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  9. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.02
    0.02102983 = product of:
      0.08411932 = sum of:
        0.044942953 = weight(_text_:storage in 7) [ClassicSimilarity], result of:
          0.044942953 = score(doc=7,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.24080718 = fieldWeight in 7, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
        0.039176363 = weight(_text_:retrieval in 7) [ClassicSimilarity], result of:
          0.039176363 = score(doc=7,freq=16.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.37811437 = fieldWeight in 7, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
      0.25 = coord(2/8)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.
    Content
    Inhalt: Introduction Document File Preparation - Manual Indexing - Information Extraction - Vector Space Modeling - Matrix Decompositions - Query Representations - Ranking and Relevance Feedback - Searching by Link Structure - User Interface - Book Format Document File Preparation Document Purification and Analysis - Text Formatting - Validation - Manual Indexing - Automatic Indexing - Item Normalization - Inverted File Structures - Document File - Dictionary List - Inversion List - Other File Structures Vector Space Models Construction - Term-by-Document Matrices - Simple Query Matching - Design Issues - Term Weighting - Sparse Matrix Storage - Low-Rank Approximations Matrix Decompositions QR Factorization - Singular Value Decomposition - Low-Rank Approximations - Query Matching - Software - Semidiscrete Decomposition - Updating Techniques Query Management Query Binding - Types of Queries - Boolean Queries - Natural Language Queries - Thesaurus Queries - Fuzzy Queries - Term Searches - Probabilistic Queries Ranking and Relevance Feedback Performance Evaluation - Precision - Recall - Average Precision - Genetic Algorithms - Relevance Feedback Searching by Link Structure HITS Method - HITS Implementation - HITS Summary - PageRank Method - PageRank Adjustments - PageRank Implementation - PageRank Summary User Interface Considerations General Guidelines - Search Engine Interfaces - Form Fill-in - Display Considerations - Progress Indication - No Penalties for Error - Results - Test and Retest - Final Considerations Further Reading
    RSWK
    Suchmaschine / Information Retrieval
    Suchmaschine / Information Retrieval / Mathematisches Modell (HEBIS)
    Subject
    Suchmaschine / Information Retrieval
    Suchmaschine / Information Retrieval / Mathematisches Modell (HEBIS)
  10. Langville, A.N.; Meyer, C.D.: Google's PageRank and beyond : the science of search engine rankings (2006) 0.01
    0.014233985 = product of:
      0.05693594 = sum of:
        0.033707213 = weight(_text_:storage in 6) [ClassicSimilarity], result of:
          0.033707213 = score(doc=6,freq=2.0), product of:
            0.1866346 = queryWeight, product of:
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.034252144 = queryNorm
            0.18060538 = fieldWeight in 6, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4488444 = idf(docFreq=516, maxDocs=44218)
              0.0234375 = fieldNorm(doc=6)
        0.023228727 = weight(_text_:retrieval in 6) [ClassicSimilarity], result of:
          0.023228727 = score(doc=6,freq=10.0), product of:
            0.10360982 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.034252144 = queryNorm
            0.22419426 = fieldWeight in 6, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=6)
      0.25 = coord(2/8)
    
    Content
    Inhalt: Chapter 1. Introduction to Web Search Engines: 1.1 A Short History of Information Retrieval - 1.2 An Overview of Traditional Information Retrieval - 1.3 Web Information Retrieval Chapter 2. Crawling, Indexing, and Query Processing: 2.1 Crawling - 2.2 The Content Index - 2.3 Query Processing Chapter 3. Ranking Webpages by Popularity: 3.1 The Scene in 1998 - 3.2 Two Theses - 3.3 Query-Independence Chapter 4. The Mathematics of Google's PageRank: 4.1 The Original Summation Formula for PageRank - 4.2 Matrix Representation of the Summation Equations - 4.3 Problems with the Iterative Process - 4.4 A Little Markov Chain Theory - 4.5 Early Adjustments to the Basic Model - 4.6 Computation of the PageRank Vector - 4.7 Theorem and Proof for Spectrum of the Google Matrix Chapter 5. Parameters in the PageRank Model: 5.1 The a Factor - 5.2 The Hyperlink Matrix H - 5.3 The Teleportation Matrix E Chapter 6. The Sensitivity of PageRank; 6.1 Sensitivity with respect to alpha - 6.2 Sensitivity with respect to H - 6.3 Sensitivity with respect to vT - 6.4 Other Analyses of Sensitivity - 6.5 Sensitivity Theorems and Proofs Chapter 7. The PageRank Problem as a Linear System: 7.1 Properties of (I - alphaS) - 7.2 Properties of (I - alphaH) - 7.3 Proof of the PageRank Sparse Linear System Chapter 8. Issues in Large-Scale Implementation of PageRank: 8.1 Storage Issues - 8.2 Convergence Criterion - 8.3 Accuracy - 8.4 Dangling Nodes - 8.5 Back Button Modeling
    Chapter 9. Accelerating the Computation of PageRank: 9.1 An Adaptive Power Method - 9.2 Extrapolation - 9.3 Aggregation - 9.4 Other Numerical Methods Chapter 10. Updating the PageRank Vector: 10.1 The Two Updating Problems and their History - 10.2 Restarting the Power Method - 10.3 Approximate Updating Using Approximate Aggregation - 10.4 Exact Aggregation - 10.5 Exact vs. Approximate Aggregation - 10.6 Updating with Iterative Aggregation - 10.7 Determining the Partition - 10.8 Conclusions Chapter 11. The HITS Method for Ranking Webpages: 11.1 The HITS Algorithm - 11.2 HITS Implementation - 11.3 HITS Convergence - 11.4 HITS Example - 11.5 Strengths and Weaknesses of HITS - 11.6 HITS's Relationship to Bibliometrics - 11.7 Query-Independent HITS - 11.8 Accelerating HITS - 11.9 HITS Sensitivity Chapter 12. Other Link Methods for Ranking Webpages: 12.1 SALSA - 12.2 Hybrid Ranking Methods - 12.3 Rankings based on Traffic Flow Chapter 13. The Future of Web Information Retrieval: 13.1 Spam - 13.2 Personalization - 13.3 Clustering - 13.4 Intelligent Agents - 13.5 Trends and Time-Sensitive Search - 13.6 Privacy and Censorship - 13.7 Library Classification Schemes - 13.8 Data Fusion Chapter 14. Resources for Web Information Retrieval: 14.1 Resources for Getting Started - 14.2 Resources for Serious Study Chapter 15. The Mathematics Guide: 15.1 Linear Algebra - 15.2 Perron-Frobenius Theory - 15.3 Markov Chains - 15.4 Perron Complementation - 15.5 Stochastic Complementation - 15.6 Censoring - 15.7 Aggregation - 15.8 Disaggregation

Types