Search (4 results, page 1 of 1)

  • × author_ss:"Beheshti, J."
  • × author_ss:"Cole, C."
  1. Cole, C.; Leide, J.E.; Large, A,; Beheshti, J.; Brooks, M.: Putting it together online : information need identification for the domain novice user (2005) 0.01
    0.009625921 = product of:
      0.019251842 = sum of:
        0.019251842 = product of:
          0.038503684 = sum of:
            0.038503684 = weight(_text_:systems in 3469) [ClassicSimilarity], result of:
              0.038503684 = score(doc=3469,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.24009174 = fieldWeight in 3469, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3469)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Domain novice users in the beginning stages of researching a topic find themselves searching for information via information retrieval (IR) systems before they have identified their information need. Pre-Internet access technologies adapted by current IR systems poorly serve these domain novice users, whose behavior might be characterized as rudderless and without a compass. In this article we describe a conceptual design for an information retrieval system that incorporates standard information need identification classification and subject cataloging schemes, called the INIIReye System, and a study that tests the efficacy of the innovative part of the INIIReye System, called the Associative Index. The Associative Index helps the user put together his or her associative thoughts-Vannevar Bush's idea of associative indexing for his Memex machine that he never actually described. For the first time, data from the study reported here quantitatively supports the theoretical notion that the information seeker's information need is identified through transformation of his/her knowledge structure (i.e., the seeker's cognitive map or perspective an the task far which information is being sought).
  2. Cole, C.; Beheshti, J.; Leide, J. E.; Large, A.: Interactive information retrieval : bringing the user to a selection state (2005) 0.01
    0.007700737 = product of:
      0.015401474 = sum of:
        0.015401474 = product of:
          0.030802948 = sum of:
            0.030802948 = weight(_text_:systems in 36) [ClassicSimilarity], result of:
              0.030802948 = score(doc=36,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19207339 = fieldWeight in 36, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=36)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    There have been various approaches to conceptualizing interactive information retrieval (IR), which can be generally divided into system and user approaches (Hearst, 1999; cf. also Spink, 1997). Both system and user approaches define user-system interaction in terms of the system and the user reacting to the actions or behaviors of the other: the system reacts to the user's input; the user to the output of the system (Spink, 1997). In system approach models of the interaction, e.g., Moran (1981), "[T]he user initiates an action or operation and the system responds in some way which in turn leads the user to initiate another action and so on" (Beaulieu, 2000, p. 433). In its purest form, the system approach models the user as a reactive part of the interaction, with the system taking the lead (Bates, 1990). User approaches, on the other hand, in their purest form wish to insert a model of the user in all its socio-cognitive dimensions, to the extent that system designers consider such approaches impractical (Vakkari and Jarvelin, 2005, Chap. 7, this volume). The cognitive approach to IR interaction attempts to overcome this divide (Ruthven, 2005, Chap. 4, this volume; Vakkari and Jarvelin, 2005 Chap. 7, this volume) by representing the cognitive elements of both system designers and the user in the interaction model (Larsen and Ingwersen, 2005 Chap. 3, this volume). There are cognitive approach researchers meeting in a central ground from both the system and user side. On the system side, are computer scientists employing cognitive research to design more effective IR systems from the point of view of the user's task (Nathan, 1990; Fischer, Henninger, and Redmiles, 1991; O'Day and Jeffries, 1993; Russell et al., 1993; Kitajima and Polson, 1996; Terwilliger and Polson, 1997). On the user side are cognitive approach researchers applying methods, concepts and models from psychology to design systems that are more in tune with how users acquire information (e.g., Belkin, 1980; Ford (2005, Chap. 5, this volume); Ingwersen (Larsen and Ingwersen, 2005, Chap. 3, this volume); Saracevic, 1996; Vakkari (Vakkari and Jarvelin, 2005, Chap. 7, this volume)).
  3. Yi, K.; Beheshti, J.; Cole, C.; Leide, J.E.; Large, A.: User search behavior of domain-specific information retrieval systems : an analysis of the query logs from PsycINFO and ABC-Clio's Historical Abstracts/America: History and Life (2006) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 197) [ClassicSimilarity], result of:
              0.027226217 = score(doc=197,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=197)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  4. Cole, C.; Lin, Y.; Leide, J.; Large, A.; Beheshti, J.: ¬A classification of mental models of undergraduates seeking information for a course essay in history and psychology : preliminary investigations into aligning their mental models with online thesauri (2007) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 625) [ClassicSimilarity], result of:
              0.021780973 = score(doc=625,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=625)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The article reports a field study which examined the mental models of 80 undergraduates seeking information for either a history or psychology course essay when they were in an early, exploration stage of researching their essay. This group is presently at a disadvantage when using thesaurus-type schemes in indexes and online search engines because there is a disconnect between how domain novice users of IR systems represent a topic space and how this space is represented in the standard IR system thesaurus. The study attempted to (a) ascertain the coding language used by the 80 undergraduates in the study to mentally represent their topic and then (b) align the mental models with the hierarchical structure found in many thesauri. The intervention focused the undergraduates' thinking about their topic from a topic statement to a thesis statement. The undergraduates were asked to produce three mental model diagrams for their real-life course essay at the beginning, middle, and end of the interview, for a total of 240 mental model diagrams, from which we created a 12-category mental model classification scheme. Findings indicate that at the end of the intervention, (a) the percentage of vertical mental models increased from 24 to 35% of all mental models; but that (b) 3rd-year students had fewer vertical mental models than did 1st-year undergraduates in the study, which is counterintuitive. The results indicate that there is justification for pursuing our research based on the hypothesis that rotating a domain novice's mental model into a vertical position would make it easier for him or her to cognitively connect with the thesaurus's hierarchical representation of the topic area.