Search (2 results, page 1 of 1)

  • × author_ss:"Costa-jussà, M.R."
  • × theme_ss:"Computerlinguistik"
  1. Costa-jussà, M.R.: How much hybridization does machine translation need? (2015) 0.02
    0.01633573 = product of:
      0.03267146 = sum of:
        0.03267146 = product of:
          0.06534292 = sum of:
            0.06534292 = weight(_text_:systems in 2227) [ClassicSimilarity], result of:
              0.06534292 = score(doc=2227,freq=8.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4074492 = fieldWeight in 2227, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2227)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Rule-based and corpus-based machine translation (MT) have coexisted for more than 20 years. Recently, boundaries between the two paradigms have narrowed and hybrid approaches are gaining interest from both academia and businesses. However, since hybrid approaches involve the multidisciplinary interaction of linguists, computer scientists, engineers, and information specialists, understandably a number of issues exist. While statistical methods currently dominate research work in MT, most commercial MT systems are technically hybrid systems. The research community should investigate the benefits and questions surrounding the hybridization of MT systems more actively. This paper discusses various issues related to hybrid MT including its origins, architectures, achievements, and frustrations experienced in the community. It can be said that both rule-based and corpus- based MT systems have benefited from hybridization when effectively integrated. In fact, many of the current rule/corpus-based MT approaches are already hybridized since they do include statistics/rules at some point.
  2. Farreús, M.; Costa-jussà, M.R.; Popovic' Morse, M.: Study and correlation analysis of linguistic, perceptual, and automatic machine translation evaluations (2012) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 4975) [ClassicSimilarity], result of:
              0.03267146 = score(doc=4975,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 4975, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4975)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Evaluation of machine translation output is an important task. Various human evaluation techniques as well as automatic metrics have been proposed and investigated in the last decade. However, very few evaluation methods take the linguistic aspect into account. In this article, we use an objective evaluation method for machine translation output that classifies all translation errors into one of the five following linguistic levels: orthographic, morphological, lexical, semantic, and syntactic. Linguistic guidelines for the target language are required, and human evaluators use them in to classify the output errors. The experiments are performed on English-to-Catalan and Spanish-to-Catalan translation outputs generated by four different systems: 2 rule-based and 2 statistical. All translations are evaluated using the 3 following methods: a standard human perceptual evaluation method, several widely used automatic metrics, and the human linguistic evaluation. Pearson and Spearman correlation coefficients between the linguistic, perceptual, and automatic results are then calculated, showing that the semantic level correlates significantly with both perceptual evaluation and automatic metrics.