Search (10 results, page 1 of 1)

  • × author_ss:"Losee, R.M."
  • × year_i:[1990 TO 2000}
  1. Losee, R.M.: Determining information retrieval and filtering performance without experimentation (1995) 0.04
    0.043804124 = product of:
      0.08760825 = sum of:
        0.08760825 = sum of:
          0.038116705 = weight(_text_:systems in 3368) [ClassicSimilarity], result of:
            0.038116705 = score(doc=3368,freq=2.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.23767869 = fieldWeight in 3368, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3368)
          0.049491543 = weight(_text_:22 in 3368) [ClassicSimilarity], result of:
            0.049491543 = score(doc=3368,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.2708308 = fieldWeight in 3368, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3368)
      0.5 = coord(1/2)
    
    Abstract
    The performance of an information retrieval or text and media filtering system may be determined through analytic methods as well as by traditional simulation or experimental methods. These analytic methods can provide precise statements about expected performance. They can thus determine which of 2 similarly performing systems is superior. For both a single query terms and for a multiple query term retrieval model, a model for comparing the performance of different probabilistic retrieval methods is developed. This method may be used in computing the average search length for a query, given only knowledge of database parameter values. Describes predictive models for inverse document frequency, binary independence, and relevance feedback based retrieval and filtering. Simulation illustrate how the single term model performs and sample performance predictions are given for single term and multiple term problems
    Date
    22. 2.1996 13:14:10
  2. Losee, R.M.: Term dependence : truncating the Bahadur Lazarsfeld expansion (1994) 0.02
    0.01633573 = product of:
      0.03267146 = sum of:
        0.03267146 = product of:
          0.06534292 = sum of:
            0.06534292 = weight(_text_:systems in 7390) [ClassicSimilarity], result of:
              0.06534292 = score(doc=7390,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4074492 = fieldWeight in 7390, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.09375 = fieldNorm(doc=7390)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Studies the performance of probabilistic information retrieval systems where differing statistical dependence assumptions are used when estimating the probabilities inherent in the retrieval model. Uses the Bahadur Lazarsfeld expansion model
  3. Losee, R.M.: Seven fundamental questions for the science of library classification (1993) 0.02
    0.015401474 = product of:
      0.030802948 = sum of:
        0.030802948 = product of:
          0.061605897 = sum of:
            0.061605897 = weight(_text_:systems in 4508) [ClassicSimilarity], result of:
              0.061605897 = score(doc=4508,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38414678 = fieldWeight in 4508, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4508)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For classification to advance to the point where optimal systems may be developed for manual or automated use, it will be necessary for a science of document or library classification to be developed. Seven questions are posed which the author feels must be answered before such optimal systems can be developed. Suggestions are made as to the forms that answers to these questions might take
  4. Losee, R.M.: How to study classification systems and their appropriateness for individual institutions (1995) 0.02
    0.015401474 = product of:
      0.030802948 = sum of:
        0.030802948 = product of:
          0.061605897 = sum of:
            0.061605897 = weight(_text_:systems in 5545) [ClassicSimilarity], result of:
              0.061605897 = score(doc=5545,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38414678 = fieldWeight in 5545, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5545)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Answers to questions concerning individual library decisions to adopt classification systems are important in understanding the efffectiveness of libraries but are difficult to provide. Measures of classification system performance are discussed, as are different methodologies that may be used to seek answers, ranging from formal or philosophical models to quantitative experimental techniques and qualitative methods
  5. Losee, R.M.: ¬A Gray code based ordering for documents on shelves : classification for browsing and retrieval (1992) 0.01
    0.013476291 = product of:
      0.026952581 = sum of:
        0.026952581 = product of:
          0.053905163 = sum of:
            0.053905163 = weight(_text_:systems in 2335) [ClassicSimilarity], result of:
              0.053905163 = score(doc=2335,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.33612844 = fieldWeight in 2335, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2335)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A document classifier places documents together in a linear arrangement for browsing or high-speed access by human or computerised information retrieval systems. Requirements for document classification and browsing systems are developed from similarity measures, distance measures, and the notion of subject aboutness. A requirement that documents be arranged in decreasing order of similarity as the distance from a given document increases can often not be met. Based on these requirements, information-theoretic considerations, and the Gray code, a classification system is proposed that can classifiy documents without human intervention. A measure of classifier performance is developed, and used to evaluate experimental results comparing the distance between subject headings assigned to documents given classifications from the proposed system and the Library of Congress Classification (LCC) system
  6. Losee, R.M.: Comparing Boolean and probabilistic information retrieval systems across queries and disciplines (1997) 0.01
    0.013476291 = product of:
      0.026952581 = sum of:
        0.026952581 = product of:
          0.053905163 = sum of:
            0.053905163 = weight(_text_:systems in 7709) [ClassicSimilarity], result of:
              0.053905163 = score(doc=7709,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.33612844 = fieldWeight in 7709, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7709)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Suggests a method for comparison of the use of Boolean queries and ranking documents using document and term weights, and examines their relative merits. The performance of information retrieval may be determined either by using experimental simulation, or through the application of analytic techniques that estimate the retrieval performance, given values for query and database characteristics. Using these performance predicting techniques, sample performance figures are provided for queries using the Boolean operators and, and or, as well as for probabilistic systems assuming statistical term independence or term dependence. Examines the performance of models failing to meet statistical and other assumptions
  7. Losee, R.M.; Haas, S.W.: Sublanguage terms : dictionaries, usage, and automatic classification (1995) 0.01
    0.010890487 = product of:
      0.021780973 = sum of:
        0.021780973 = product of:
          0.043561947 = sum of:
            0.043561947 = weight(_text_:systems in 2650) [ClassicSimilarity], result of:
              0.043561947 = score(doc=2650,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2716328 = fieldWeight in 2650, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2650)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The use of terms from natural and social science titles and abstracts is studied from the perspective of sublanguages and their specialized dictionaries. Explores different notions of sublanguage distinctiveness. Object methods for separating hard and soft sciences are suggested based on measures of sublanguage use, dictionary characteristics, and sublanguage distinctiveness. Abstracts were automatically classified with a high degree of accuracy by using a formula that condsiders the degree of uniqueness of terms in each sublanguage. This may prove useful for text filtering of information retrieval systems
  8. Losee, R.M.: ¬The relative shelf location of circulated books : a study of classification, users, and browsing (1993) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 4485) [ClassicSimilarity], result of:
              0.038116705 = score(doc=4485,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 4485, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4485)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Patrons often browse through books organized by a library classification system, looking for books to use and possibly circulate. This research is an examination of the clustering of similar books provided by a classification system and ways in which the books that patrons circulate are clustered. Measures of classification system performance are suggested and used to evaluate two test collections. Regression formulas are derived describing the relationships among the number of areas in which books were found (the number of stops a patron makes when browsing), the distances across a cluster, and the average number of books a patron circulates. Patrons were found usually to make more stops than there were books found at their average stop. Consequences for full-text document systems and online catalogs are suggested
  9. Haas, S.W.; Losee, R.M.: Looking in text windows : their size and composition (1994) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 8525) [ClassicSimilarity], result of:
              0.03267146 = score(doc=8525,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 8525, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=8525)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A text window is a group of words appearing in contiguous positions in text used to exploit a variety of lexical, syntactics, and semantic relationships without having to analyze the text explicitely for their structure. This supports the previously suggested idea that natural grouping of words are best treated as a unit of size 7 to 11 words, that is, plus or minus 3 to 5 words. The text retrieval experiments varying the size of windows, both with full text and with stopwords removed, support these size ranges. The characteristcs of windows that best match terms in queries are examined in detail, revealing intersting differences between those for queries with good results and those for queries with poorer results. Queries with good results tend to contain morte content word phrase and few terms with high frequency of use in the database. Information retrieval systems may benefit from expanding thesaurus-style relationships or incorporating statistical dependencies for terms within these windows
  10. Losee, R.M.: Browsing document collections : automatically organizing digital libraries and hypermedia using the Gray code (1997) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 146) [ClassicSimilarity], result of:
              0.03267146 = score(doc=146,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 146, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=146)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Relevance and economic feedback may be used to produce an ordering of documents that supports browsing in hypermedia and digital libraries. Document classification based on the Gray code provides paths through the entire collection, each path traversing each node in the set of documents exactly once. Examines systems organizing document based on weighted and unweighted Gray codes. Relevance feedback is used to conceptually organize the collection for an individual to browse, based on that individual's interests and information needs, as reflected by their relevance judgements and user supplied economic preferences. Applies Bayesian learning theory to estimating the characteristics of documents of interest to the user and supplying an analytic model of browsing performance, based on minimising the Expected Browsing Distance. Economic feedback may be used to change the ordering of documents to benefit the user. Using these techniques, a hypermedia or digital library may order any and all available documents, not just those examined, based on the information provided by the searcher or people with similar interests