Search (3 results, page 1 of 1)

  • × author_ss:"Robertson, S.E."
  • × theme_ss:"Retrievalalgorithmen"
  1. MacFarlane, A.; Robertson, S.E.; McCann, J.A.: Parallel computing for passage retrieval (2004) 0.01
    0.014140441 = product of:
      0.028280882 = sum of:
        0.028280882 = product of:
          0.056561764 = sum of:
            0.056561764 = weight(_text_:22 in 5108) [ClassicSimilarity], result of:
              0.056561764 = score(doc=5108,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.30952093 = fieldWeight in 5108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5108)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2007 18:30:22
  2. MacFarlane, A.; McCann, J.A.; Robertson, S.E.: Parallel methods for the generation of partitioned inverted files (2005) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 651) [ClassicSimilarity], result of:
              0.03267146 = score(doc=651,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 651, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=651)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The generation of inverted indexes is one of the most computationally intensive activities for information retrieval systems: indexing large multi-gigabyte text databases can take many hours or even days to complete. We examine the generation of partitioned inverted files in order to speed up the process of indexing. Two types of index partitions are investigated: TermId and DocId. Design/methodology/approach - We use standard measures used in parallel computing such as speedup and efficiency to examine the computing results and also the space costs of our trial indexing experiments. Findings - The results from runs on both partitioning methods are compared and contrasted, concluding that DocId is the more efficient method. Practical implications - The practical implications are that the DocId partitioning method would in most circumstances be used for distributing inverted file data in a parallel computer, particularly if indexing speed is the primary consideration. Originality/value - The paper is of value to database administrators who manage large-scale text collections, and who need to use parallel computing to implement their text retrieval services.
  3. Robertson, S.E.; Sparck Jones, K.: Simple, proven approaches to text retrieval (1997) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 4532) [ClassicSimilarity], result of:
              0.027226217 = score(doc=4532,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 4532, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4532)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This technical note describes straightforward techniques for document indexing and retrieval that have been solidly established through extensive testing and are easy to apply. They are useful for many different types of text material, are viable for very large files, and have the advantage that they do not require special skills or training for searching, but are easy for end users. The document and text retrieval methods described here have a sound theoretical basis, are well established by extensive testing, and the ideas involved are now implemented in some commercial retrieval systems. Testing in the last few years has, in particular, shown that the methods presented here work very well with full texts, not only title and abstracts, and with large files of texts containing three quarters of a million documents. These tests, the TREC Tests (see Harman 1993 - 1997; IP&M 1995), have been rigorous comparative evaluations involving many different approaches to information retrieval. These techniques depend an the use of simple terms for indexing both request and document texts; an term weighting exploiting statistical information about term occurrences; an scoring for request-document matching, using these weights, to obtain a ranked search output; and an relevance feedback to modify request weights or term sets in iterative searching. The normal implementation is via an inverted file organisation using a term list with linked document identifiers, plus counting data, and pointers to the actual texts. The user's request can be a word list, phrases, sentences or extended text.