Search (15 results, page 1 of 1)

  • × classification_ss:"54.72 / Künstliche Intelligenz"
  1. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.03
    0.033315927 = product of:
      0.06663185 = sum of:
        0.06663185 = sum of:
          0.0360169 = weight(_text_:systems in 150) [ClassicSimilarity], result of:
            0.0360169 = score(doc=150,freq=14.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.22458525 = fieldWeight in 150, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
          0.030614955 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
            0.030614955 = score(doc=150,freq=6.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.16753313 = fieldWeight in 150, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
      0.5 = coord(1/2)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
    LCSH
    Multimedia systems
    Information storage and retrieval systems
    Subject
    Multimedia systems
    Information storage and retrieval systems
  2. Schoenhoff, D.M.: ¬The barefoot expert : the interface of computerized knowledge systems and indigenous knowledge systems (1993) 0.02
    0.01800845 = product of:
      0.0360169 = sum of:
        0.0360169 = product of:
          0.0720338 = sum of:
            0.0720338 = weight(_text_:systems in 4592) [ClassicSimilarity], result of:
              0.0720338 = score(doc=4592,freq=14.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.4491705 = fieldWeight in 4592, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4592)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It may seem a strange match - AI and crop irrigation or AI and the Serengeti lions but researchers in artificial intelligence envision expert systems as a new technology for capturing the knowledge and reasoning process of experts in agriculture, wildlife management and many other fields. These computer programmes have a relevance for developing nations that desire to close the gap between themselves and the richer nations of the world. Despite the value and appeal of expert systems for economic and technological development, Schoenhoff dicloses how this technology reflects the Western preoccupation with literacy and rationality. When expert systems are introduced into developing nations, they must interact with persons who reason and articulate their knowledge in ways unfamiliar to high-tech cultures. Knowledge, particularly in poor and traditional communities, may be expressed in proverbs rather than propositions or in folklore rather that formulas. Drawing upon diverse disciplines, the author explores whether such indigenous knowledge can be incorporated into the formal language and artificial rationality of the computer - and the imperative for working toward this incorporation.
    LCSH
    Expert systems (Computer science)
    Subject
    Expert systems (Computer science)
  3. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.017960707 = product of:
      0.035921413 = sum of:
        0.035921413 = sum of:
          0.021780973 = weight(_text_:systems in 1789) [ClassicSimilarity], result of:
            0.021780973 = score(doc=1789,freq=8.0), product of:
              0.16037072 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.052184064 = queryNorm
              0.1358164 = fieldWeight in 1789, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.014140441 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.014140441 = score(doc=1789,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.5 = coord(1/2)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    LCSH
    Knowledge acquisition (Expert systems)
    Series
    Morgan Kaufmann series in data management systems
    Subject
    Knowledge acquisition (Expert systems)
  4. Aberer, K. et al.: ¬The Semantic Web : 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007 : proceedings (2007) 0.02
    0.015401474 = product of:
      0.030802948 = sum of:
        0.030802948 = product of:
          0.061605897 = sum of:
            0.061605897 = weight(_text_:systems in 2477) [ClassicSimilarity], result of:
              0.061605897 = score(doc=2477,freq=16.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38414678 = fieldWeight in 2477, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2477)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    LCSH
    Information systems
    Multimedia systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
    Subject
    Information systems
    Multimedia systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
  5. Handbuch der Künstlichen Intelligenz (2003) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 2916) [ClassicSimilarity], result of:
              0.049491543 = score(doc=2916,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 2916, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2916)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    21. 3.2008 19:10:22
  6. Social information retrieval systems : emerging technologies and applications for searching the Web effectively (2008) 0.01
    0.012175934 = product of:
      0.024351869 = sum of:
        0.024351869 = product of:
          0.048703738 = sum of:
            0.048703738 = weight(_text_:systems in 4127) [ClassicSimilarity], result of:
              0.048703738 = score(doc=4127,freq=10.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.3036947 = fieldWeight in 4127, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4127)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book provides relevant content in the areas of information retrieval systems, services, and research; covering topics such as social tagging, collaborative querying, social network analysis, subjective relevance judgments, and collaborative filtering. Answering the increasing demand for authoritative resources on Internet technologies, this will make an indispensable addition to any library collection
    Content
    Inhalt Collaborating to search effectively in different searcher modes through cues and specialty search / Naresh Kumar Agarwal and Danny C.C. Poo -- Collaborative querying using a hybrid content and results-based approach / Chandrani Sinha Ray ... [et al.] -- Collaborative classification for group-oriented organization of search results / Keiichi Nakata and Amrish Singh -- A case study of use-centered descriptions : archival descriptions of what can be done with a collection / Richard Butterworth -- Metadata for social recommendations : storing, sharing, and reusing evaluations of learning resources / Riina Vuorikari, Nikos Manouselis, and Erik Duval -- Social network models for enhancing reference-based search engine rankings / Nikolaos Korfiatis ... [et al.] -- From PageRank to social rank : authority-based retrieval in social information spaces / Sebastian Marius Kirsch ... [et al.] -- Adaptive peer-to-peer social networks for distributed content-based Web search / Le-Shin Wu ... [et al.] -- The ethics of social information retrieval / Brendan Luyt and Chu Keong Lee -- The social context of knowledge / Daniel Memmi -- Social information seeking in digital libraries / George Buchanan and Annika Hinze -- Relevant intra-actions in networked environments / Theresa Dirndorfer Anderson -- Publication and citation analysis as a tool for information retrieval / Ronald Rousseau -- Personalized information retrieval in a semantic-based learning environment / Antonella Carbonaro and Rodolfo Ferrini -- Multi-agent tourism system (MATS) / Soe Yu Maw and Myo-Myo Naing -- Hybrid recommendation systems : a case study on the movies domain / Konstantinos Markellos ... [et al.].
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  7. Handbook on ontologies (2004) 0.01
    0.011789299 = product of:
      0.023578597 = sum of:
        0.023578597 = product of:
          0.047157194 = sum of:
            0.047157194 = weight(_text_:systems in 1952) [ClassicSimilarity], result of:
              0.047157194 = score(doc=1952,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.29405114 = fieldWeight in 1952, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1952)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    LCSH
    Expert systems (Computer science)
    Series
    International handbook on information systems
    Subject
    Expert systems (Computer science)
  8. Hodgson, J.P.E.: Knowledge representation and language in AI (1991) 0.01
    0.009625921 = product of:
      0.019251842 = sum of:
        0.019251842 = product of:
          0.038503684 = sum of:
            0.038503684 = weight(_text_:systems in 1529) [ClassicSimilarity], result of:
              0.038503684 = score(doc=1529,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.24009174 = fieldWeight in 1529, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1529)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aim of this book is to highlight the relationship between knowledge representation and language in artificial intelligence, and in particular on the way in which the choice of representation influences the language used to discuss a problem - and vice versa. Opening with a discussion of knowledge representation methods, and following this with a look at reasoning methods, the author begins to make his case for the intimate relationship between language and representation. He shows how each representation method fits particularly well with some reasoning methods and less so with others, using specific languages as examples. The question of representation change, an important and complex issue about which very little is known, is addressed. Dr Hodgson gathers together recent work on problem solving, showing how, in some cases, it has been possible to use representation changes to recast problems into a language that makes them easier to solve. The author maintains throughout that the relationships that this book explores lie at the heart of the construction of large systems, examining a number of the current large AI systems from the viewpoint of representation and language to prove his point.
  9. Hermans, J.: Ontologiebasiertes Information Retrieval für das Wissensmanagement (2008) 0.01
    0.007700737 = product of:
      0.015401474 = sum of:
        0.015401474 = product of:
          0.030802948 = sum of:
            0.030802948 = weight(_text_:systems in 506) [ClassicSimilarity], result of:
              0.030802948 = score(doc=506,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19207339 = fieldWeight in 506, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=506)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Unternehmen sehen sich heutzutage regelmäßig der Herausforderung gegenübergestellt, aus umfangreichen Mengen an Dokumenten schnell relevante Informationen zu identifizieren. Dabei zeigt sich jedoch, dass Suchverfahren, die lediglich syntaktische Abgleiche von Informationsbedarfen mit potenziell relevanten Dokumenten durchführen, häufig nicht die an sie gestellten Erwartungen erfüllen. Viel versprechendes Potenzial bietet hier der Einsatz von Ontologien für das Information Retrieval. Beim ontologiebasierten Information Retrieval werden Ontologien eingesetzt, um Wissen in einer Form abzubilden, die durch Informationssysteme verarbeitet werden kann. Eine Berücksichtigung des so explizierten Wissens durch Suchalgorithmen führt dann zu einer optimierten Deckung von Informationsbedarfen. Jan Hermans stellt in seinem Buch ein adaptives Referenzmodell für die Entwicklung von ontologiebasierten Information Retrieval-Systemen vor. Zentrales Element seines Modells ist die einsatzkontextspezifische Adaption des Retrievalprozesses durch bewährte Techniken, die ausgewählte Aspekte des ontologiebasierten Information Retrievals bereits effektiv und effizient unterstützen. Die Anwendung des Referenzmodells wird anhand eines Fallbeispiels illustriert, bei dem ein Information Retrieval-System für die Suche nach Open Source-Komponenten entwickelt wird. Das Buch richtet sich gleichermaßen an Dozenten und Studierende der Wirtschaftsinformatik, Informatik und Betriebswirtschaftslehre sowie an Praktiker, die die Informationssuche im Unternehmen verbessern möchten. Jan Hermans, Jahrgang 1978, studierte Wirtschaftsinformatik an der Westfälischen Wilhelms-Universität in Münster. Seit 2003 war er als Wissenschaftlicher Mitarbeiter am European Research Center for Information Systems der WWU Münster tätig. Seine Forschungsschwerpunkte lagen in den Bereichen Wissensmanagement und Information Retrieval. Im Mai 2008 erfolgte seine Promotion zum Doktor der Wirtschaftswissenschaften.
    Series
    Advances in information systems and management science; 39
  10. Fensel, D.: Ontologies : a silver bullet for knowledge management and electronic commerce (2001) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 163) [ClassicSimilarity], result of:
              0.027226217 = score(doc=163,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 163, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=163)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies have been developed and investigated for quite a while now in artificial intelligente and natural language processing to facilitate knowledge sharing and reuse. More recently, the notion of ontologies has attracied attention from fields such as intelligent information integration, cooperative information systems, information retrieval, electronic commerce, and knowledge management. The author systematicaliy introduces the notion of ontologies to the non-expert reader and demonstrates in detail how to apply this conceptual framework for improved intranet retrieval of corporate information and knowledge and for enhanced Internet-based electronic commerce. In the second part of the book, the author presents a more technical view an emerging Web standards, like XML, RDF, XSL-T, or XQL, allowing for structural and semantic modeling and description of data and information.
  11. Hüttenegger, G.: Open Source Knowledge Management [Open-source-knowledge-Management] (2006) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 652) [ClassicSimilarity], result of:
              0.027226217 = score(doc=652,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 652, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=652)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Inhalt: Definitionen von Knowledge, Knowledge Management und Open Source.- Vision eines Knowledge Management- (KM-) Systems.- Vorhandene Open-Source-Basis.- Technische Basis.- Start mit einem Groupware System.- Alternativ Start mit einem Content-Management-System.- Einbinden von Groupware oder CMS bzw. Erweitern um DMS.- Weiterer Ausbau.- Zusammenfassungen, Abschluss und Ausblick.- Literaturverzeichnis.- Index.
  12. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 4706) [ClassicSimilarity], result of:
              0.027226217 = score(doc=4706,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 4706, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
  13. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.01
    0.0067381454 = product of:
      0.013476291 = sum of:
        0.013476291 = product of:
          0.026952581 = sum of:
            0.026952581 = weight(_text_:systems in 1981) [ClassicSimilarity], result of:
              0.026952581 = score(doc=1981,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.16806422 = fieldWeight in 1981, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1981)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
  14. Semantic digital libraries (2009) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 3371) [ClassicSimilarity], result of:
              0.021780973 = score(doc=3371,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 3371, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3371)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Libraries have always been an inspiration for the standards and technologies developed by semantic web activities. However, except for the Dublin Core specification, semantic web and social networking technologies have not been widely adopted and further developed by major digital library initiatives and projects. Yet semantic technologies offer a new level of flexibility, interoperability, and relationships for digital repositories. Kruk and McDaniel present semantic web-related aspects of current digital library activities, and introduce their functionality; they show examples ranging from general architectural descriptions to detailed usages of specific ontologies, and thus stimulate the awareness of researchers, engineers, and potential users of those technologies. Their presentation is completed by chapters on existing prototype systems such as JeromeDL, BRICKS, and Greenstone, as well as a look into the possible future of semantic digital libraries. This book is aimed at researchers and graduate students in areas like digital libraries, the semantic web, social networks, and information retrieval. This audience will benefit from detailed descriptions of both today's possibilities and also the shortcomings of applying semantic web technologies to large digital repositories of often unstructured data.
  15. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 4707) [ClassicSimilarity], result of:
              0.021780973 = score(doc=4707,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 4707, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.

Languages

  • e 12
  • d 3

Types

  • m 15
  • s 10

Subjects

Classifications