Search (9 results, page 1 of 1)

  • × classification_ss:"AN 95000"
  1. Peters, C.; Braschler, M.; Clough, P.: Multilingual information retrieval : from research to practice (2012) 0.02
    0.015401474 = product of:
      0.030802948 = sum of:
        0.030802948 = product of:
          0.061605897 = sum of:
            0.061605897 = weight(_text_:systems in 361) [ClassicSimilarity], result of:
              0.061605897 = score(doc=361,freq=16.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38414678 = fieldWeight in 361, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=361)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We are living in a multilingual world and the diversity in languages which are used to interact with information access systems has generated a wide variety of challenges to be addressed by computer and information scientists. The growing amount of non-English information accessible globally and the increased worldwide exposure of enterprises also necessitates the adaptation of Information Retrieval (IR) methods to new, multilingual settings.Peters, Braschler and Clough present a comprehensive description of the technologies involved in designing and developing systems for Multilingual Information Retrieval (MLIR). They provide readers with broad coverage of the various issues involved in creating systems to make accessible digitally stored materials regardless of the language(s) they are written in. Details on Cross-Language Information Retrieval (CLIR) are also covered that help readers to understand how to develop retrieval systems that cross language boundaries. Their work is divided into six chapters and accompanies the reader step-by-step through the various stages involved in building, using and evaluating MLIR systems. The book concludes with some examples of recent applications that utilise MLIR technologies. Some of the techniques described have recently started to appear in commercial search systems, while others have the potential to be part of future incarnations.The book is intended for graduate students, scholars, and practitioners with a basic understanding of classical text retrieval methods. It offers guidelines and information on all aspects that need to be taken into consideration when building MLIR systems, while avoiding too many 'hands-on details' that could rapidly become obsolete. Thus it bridges the gap between the material covered by most of the classical IR textbooks and the novel requirements related to the acquisition and dissemination of information in whatever language it is stored.
    Content
    Inhalt: 1 Introduction 2 Within-Language Information Retrieval 3 Cross-Language Information Retrieval 4 Interaction and User Interfaces 5 Evaluation for Multilingual Information Retrieval Systems 6 Applications of Multilingual Information Access
  2. Interactive information seeking, behaviour and retrieval (2011) 0.01
    0.012175934 = product of:
      0.024351869 = sum of:
        0.024351869 = product of:
          0.048703738 = sum of:
            0.048703738 = weight(_text_:systems in 542) [ClassicSimilarity], result of:
              0.048703738 = score(doc=542,freq=10.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.3036947 = fieldWeight in 542, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=542)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Information retrieval (IR) is a complex human activity supported by sophisticated systems. Information science has contributed much to the design and evaluation of previous generations of IR system development and to our general understanding of how such systems should be designed and yet, due to the increasing success and diversity of IR systems, many recent textbooks concentrate on IR systems themselves and ignore the human side of searching for information. This book is the first text to provide an information science perspective on IR. Unique in its scope, the book covers the whole spectrum of information retrieval, including: history and background information; behaviour and seeking task-based information; searching and retrieval approaches to investigating information; interaction and behaviour information; representation access models; evaluation interfaces for IR; interactive techniques; web retrieval, ranking and personalization; and, recommendation, collaboration and social search multimedia: interfaces and access. A key text for senior undergraduates and masters' level students of all information and library studies courses, this book is also useful for practising LIS professionals who need to better appreciate how IR systems are designed, implemented and evaluated.
  3. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.010605331 = product of:
      0.021210661 = sum of:
        0.021210661 = product of:
          0.042421322 = sum of:
            0.042421322 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.042421322 = score(doc=987,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    23. 7.2017 13:49:22
  4. Concepts in Context : Proceedings of the Cologne Conference on Interoperability and Semantics in Knowledge Organization July 19th - 20th, 2010 (2011) 0.01
    0.008837775 = product of:
      0.01767555 = sum of:
        0.01767555 = product of:
          0.0353511 = sum of:
            0.0353511 = weight(_text_:22 in 628) [ClassicSimilarity], result of:
              0.0353511 = score(doc=628,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19345059 = fieldWeight in 628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=628)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2013 11:34:18
  5. Haynes, D.: Metadata for information management and retrieval : understanding metadata and its use (2018) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 4096) [ClassicSimilarity], result of:
              0.03267146 = score(doc=4096,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 4096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4096)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This new and updated second edition of a classic text provides a thought-provoking introduction to metadata for all library and information students and professionals. Metadata for Information Management and Retrieval has been fully revised by David Haynes to bring it up to date with new technology and standards. The new edition, containing new chapters on Metadata Standards and Encoding Schemes, assesses the current theory and practice of metadata and examines key developments in terms of both policy and technology. Coverage includes: an introduction to the concept of metadata a description of the main components of metadata systems and standards an overview of the scope of metadata and its applications a description of typical information retrieval issues in corporate and research environments a demonstration of ways in which metadata is used to improve retrieval a look at ways in which metadata is used to manage information consideration of the role of metadata in information governance.
  6. Agarwal, N.K.: Exploring context in information behavior : seeker, situation, surroundings, and shared identities (2018) 0.01
    0.007700737 = product of:
      0.015401474 = sum of:
        0.015401474 = product of:
          0.030802948 = sum of:
            0.030802948 = weight(_text_:systems in 4992) [ClassicSimilarity], result of:
              0.030802948 = score(doc=4992,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19207339 = fieldWeight in 4992, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The field of human information behavior runs the gamut of processes from the realization of a need or gap in understanding, to the search for information from one or more sources to fill that gap, to the use of that information to complete a task at hand or to satisfy a curiosity, as well as other behaviors such as avoiding information or finding information serendipitously. Designers of mechanisms, tools, and computer-based systems to facilitate this seeking and search process often lack a full knowledge of the context surrounding the search. This context may vary depending on the job or role of the person; individual characteristics such as personality, domain knowledge, age, gender, perception of self, etc.; the task at hand; the source and the channel and their degree of accessibility and usability; and the relationship that the seeker shares with the source. Yet researchers have yet to agree on what context really means. While there have been various research studies incorporating context, and biennial conferences on context in information behavior, there lacks a clear definition of what context is, what its boundaries are, and what elements and variables comprise context. In this book, we look at the many definitions of and the theoretical and empirical studies on context, and I attempt to map the conceptual space of context in information behavior. I propose theoretical frameworks to map the boundaries, elements, and variables of context. I then discuss how to incorporate these frameworks and variables in the design of research studies on context. We then arrive at a unified definition of context. This book should provide designers of search systems a better understanding of context as they seek to meet the needs and demands of information seekers. It will be an important resource for researchers in Library and Information Science, especially doctoral students looking for one resource that covers an exhaustive range of the most current literature related to context, the best selection of classics, and a synthesis of these into theoretical frameworks and a unified definition. The book should help to move forward research in the field by clarifying the elements, variables, and views that are pertinent. In particular, the list of elements to be considered, and the variables associated with each element will be extremely useful to researchers wanting to include the influences of context in their studies.
  7. Hider, P.: Information resource description : creating and managing metadata (2012) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 2086) [ClassicSimilarity], result of:
              0.027226217 = score(doc=2086,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 2086, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2086)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Information resource attributes - metadata for information retrieval - metadata sources and quality - economics and management of metadata - knowledge organization systems - the semantic web - books and e-books, websites and audiovisual resources - business and government documents - learning resources - the field of information/knowledge organization.
  8. Hooland, S. van; Verborgh, R.: Linked data for Lilibraries, archives and museums : how to clean, link, and publish your metadata (2014) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 5153) [ClassicSimilarity], result of:
              0.021780973 = score(doc=5153,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 5153, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5153)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This highly practical handbook teaches you how to unlock the value of your existing metadata through cleaning, reconciliation, enrichment and linking and how to streamline the process of new metadata creation. Libraries, archives and museums are facing up to the challenge of providing access to fast growing collections whilst managing cuts to budgets. Key to this is the creation, linking and publishing of good quality metadata as Linked Data that will allow their collections to be discovered, accessed and disseminated in a sustainable manner. This highly practical handbook teaches you how to unlock the value of your existing metadata through cleaning, reconciliation, enrichment and linking and how to streamline the process of new metadata creation. Metadata experts Seth van Hooland and Ruben Verborgh introduce the key concepts of metadata standards and Linked Data and how they can be practically applied to existing metadata, giving readers the tools and understanding to achieve maximum results with limited resources. Readers will learn how to critically assess and use (semi-)automated methods of managing metadata through hands-on exercises within the book and on the accompanying website. Each chapter is built around a case study from institutions around the world, demonstrating how freely available tools are being successfully used in different metadata contexts. This handbook delivers the necessary conceptual and practical understanding to empower practitioners to make the right decisions when making their organisations resources accessible on the Web. Key topics include, the value of metadata; metadata creation - architecture, data models and standards; metadata cleaning; metadata reconciliation; metadata enrichment through Linked Data and named-entity recognition; importing and exporting metadata; ensuring a sustainable publishing model. This will be an invaluable guide for metadata practitioners and researchers within all cultural heritage contexts, from library cataloguers and archivists to museum curatorial staff. It will also be of interest to students and academics within information science and digital humanities fields. IT managers with responsibility for information systems, as well as strategy heads and budget holders, at cultural heritage organisations, will find this a valuable decision-making aid.
  9. Tunkelang, D.: Faceted search (2009) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 26) [ClassicSimilarity], result of:
              0.021780973 = score(doc=26,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 26, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=26)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.

Languages

Types