Search (24 results, page 1 of 2)

  • × theme_ss:"Automatisches Klassifizieren"
  • × year_i:[2000 TO 2010}
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.10
    0.10409279 = sum of:
      0.08288213 = product of:
        0.24864638 = sum of:
          0.24864638 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.24864638 = score(doc=562,freq=2.0), product of:
              0.4424171 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.052184064 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.33333334 = coord(1/3)
      0.021210661 = product of:
        0.042421322 = sum of:
          0.042421322 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.042421322 = score(doc=562,freq=2.0), product of:
              0.1827397 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052184064 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.5 = coord(1/2)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Subramanian, S.; Shafer, K.E.: Clustering (2001) 0.02
    0.021210661 = product of:
      0.042421322 = sum of:
        0.042421322 = product of:
          0.084842645 = sum of:
            0.084842645 = weight(_text_:22 in 1046) [ClassicSimilarity], result of:
              0.084842645 = score(doc=1046,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.46428138 = fieldWeight in 1046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1046)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    5. 5.2003 14:17:22
  3. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.02
    0.01767555 = product of:
      0.0353511 = sum of:
        0.0353511 = product of:
          0.0707022 = sum of:
            0.0707022 = weight(_text_:22 in 611) [ClassicSimilarity], result of:
              0.0707022 = score(doc=611,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38690117 = fieldWeight in 611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=611)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 8.2009 12:54:24
  4. Choi, B.; Peng, X.: Dynamic and hierarchical classification of Web pages (2004) 0.01
    0.014147157 = product of:
      0.028294314 = sum of:
        0.028294314 = product of:
          0.056588627 = sum of:
            0.056588627 = weight(_text_:systems in 2555) [ClassicSimilarity], result of:
              0.056588627 = score(doc=2555,freq=6.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.35286134 = fieldWeight in 2555, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2555)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automatic classification of Web pages is an effective way to organise the vast amount of information and to assist in retrieving relevant information from the Internet. Although many automatic classification systems have been proposed, most of them ignore the conflict between the fixed number of categories and the growing number of Web pages being added into the systems. They also require searching through all existing categories to make any classification. This article proposes a dynamic and hierarchical classification system that is capable of adding new categories as required, organising the Web pages into a tree structure, and classifying Web pages by searching through only one path of the tree. The proposed single-path search technique reduces the search complexity from (n) to (log(n)). Test results show that the system improves the accuracy of classification by 6 percent in comparison to related systems. The dynamic-category expansion technique also achieves satisfying results for adding new categories into the system as required.
  5. Automatic classification research at OCLC (2002) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 1563) [ClassicSimilarity], result of:
              0.049491543 = score(doc=1563,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 1563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1563)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    5. 5.2003 9:22:09
  6. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.049491543 = score(doc=5273,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 16:24:52
  7. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.01
    0.012372886 = product of:
      0.024745772 = sum of:
        0.024745772 = product of:
          0.049491543 = sum of:
            0.049491543 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.049491543 = score(doc=2560,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2008 18:31:54
  8. Koch, T.; Ardö, A.: Automatic classification of full-text HTML-documents from one specific subject area : DESIRE II D3.6a, Working Paper 2 (2000) 0.01
    0.010890487 = product of:
      0.021780973 = sum of:
        0.021780973 = product of:
          0.043561947 = sum of:
            0.043561947 = weight(_text_:systems in 1667) [ClassicSimilarity], result of:
              0.043561947 = score(doc=1667,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2716328 = fieldWeight in 1667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1667)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    1 Introduction / 2 Method overview / 3 Ei thesaurus preprocessing / 4 Automatic classification process: 4.1 Matching -- 4.2 Weighting -- 4.3 Preparation for display / 5 Results of the classification process / 6 Evaluations / 7 Software / 8 Other applications / 9 Experiments with universal classification systems / References / Appendix A: Ei classification service: Software / Appendix B: Use of the classification software as subject filter in a WWW harvester.
  9. Guerrero-Bote, V.P.; Moya Anegón, F. de; Herrero Solana, V.: Document organization using Kohonen's algorithm (2002) 0.01
    0.010890487 = product of:
      0.021780973 = sum of:
        0.021780973 = product of:
          0.043561947 = sum of:
            0.043561947 = weight(_text_:systems in 2564) [ClassicSimilarity], result of:
              0.043561947 = score(doc=2564,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2716328 = fieldWeight in 2564, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2564)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The classification of documents from a bibliographic database is a task that is linked to processes of information retrieval based on partial matching. A method is described of vectorizing reference documents from LISA which permits their topological organization using Kohonen's algorithm. As an example a map is generated of 202 documents from LISA, and an analysis is made of the possibilities of this type of neural network with respect to the development of information retrieval systems based on graphical browsing.
  10. Liu, R.-L.: Context recognition for hierarchical text classification (2009) 0.01
    0.010605331 = product of:
      0.021210661 = sum of:
        0.021210661 = product of:
          0.042421322 = sum of:
            0.042421322 = weight(_text_:22 in 2760) [ClassicSimilarity], result of:
              0.042421322 = score(doc=2760,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23214069 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 19:11:54
  11. Pfeffer, M.: Automatische Vergabe von RVK-Notationen mittels fallbasiertem Schließen (2009) 0.01
    0.010605331 = product of:
      0.021210661 = sum of:
        0.021210661 = product of:
          0.042421322 = sum of:
            0.042421322 = weight(_text_:22 in 3051) [ClassicSimilarity], result of:
              0.042421322 = score(doc=3051,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23214069 = fieldWeight in 3051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3051)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 8.2009 19:51:28
  12. Humphrey, S.M.; Névéol, A.; Browne, A.; Gobeil, J.; Ruch, P.; Darmoni, S.J.: Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty (2009) 0.01
    0.009625921 = product of:
      0.019251842 = sum of:
        0.019251842 = product of:
          0.038503684 = sum of:
            0.038503684 = weight(_text_:systems in 3300) [ClassicSimilarity], result of:
              0.038503684 = score(doc=3300,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.24009174 = fieldWeight in 3300, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3300)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including, Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing of the documents by the Medical Subject Headings (MeSH) controlled vocabulary in order to assign metaterms (MTs), and Journal Descriptor Indexing (JDI), based on human categorization of about 4,000 journals and statistical associations between journal descriptors (JDs) and textwords in the documents. We evaluate and compare the performance of these systems against a gold standard of humanly assigned categories for 100 MEDLINE documents, using six measures selected from trec_eval. The results show that for five of the measures performance is comparable, and for one measure JDI is superior. We conclude that these results favor JDI, given the significantly greater intellectual overhead involved in human indexing and maintaining a rule base for mapping MeSH terms to MTs. We also note a JDI method that associates JDs with MeSH indexing rather than textwords, and it may be worthwhile to investigate whether this JDI method (statistical) and CISMeF (rule-based) might be combined and then evaluated showing they are complementary to one another.
  13. Sebastiani, F.: Classification of text, automatic (2006) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 5003) [ClassicSimilarity], result of:
              0.038116705 = score(doc=5003,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 5003, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5003)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automatic text classification (ATC) is a discipline at the crossroads of information retrieval (IR), machine learning (ML), and computational linguistics (CL), and consists in the realization of text classifiers, i.e. software systems capable of assigning texts to one or more categories, or classes, from a predefined set. Applications range from the automated indexing of scientific articles, to e-mail routing, spam filtering, authorship attribution, and automated survey coding. This article will focus on the ML approach to ATC, whereby a software system (called the learner) automatically builds a classifier for the categories of interest by generalizing from a "training" set of pre-classified texts.
  14. Mengle, S.; Goharian, N.: Passage detection using text classification (2009) 0.01
    0.008837775 = product of:
      0.01767555 = sum of:
        0.01767555 = product of:
          0.0353511 = sum of:
            0.0353511 = weight(_text_:22 in 2765) [ClassicSimilarity], result of:
              0.0353511 = score(doc=2765,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19345059 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 19:14:43
  15. Prabowo, R.; Jackson, M.; Burden, P.; Knoell, H.-D.: Ontology-based automatic classification for the Web pages : design, implementation and evaluation (2002) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 3383) [ClassicSimilarity], result of:
              0.03267146 = score(doc=3383,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 3383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3383)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Beitrag bei: The Third International Conference on Web Information Systems Engineering (WISE'00) Dec., 12-14, 2002, Singapore, S.182.
  16. Golub, K.: Automated subject classification of textual Web pages, based on a controlled vocabulary : challenges and recommendations (2006) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 5897) [ClassicSimilarity], result of:
              0.03267146 = score(doc=5897,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 5897, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5897)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Beitrag eines Themenheftes "Knowledge organization systems and services"
  17. Ko, Y.; Seo, J.: Text classification from unlabeled documents with bootstrapping and feature projection techniques (2009) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 2452) [ClassicSimilarity], result of:
              0.03267146 = score(doc=2452,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 2452, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2452)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many machine learning algorithms have been applied to text classification tasks. In the machine learning paradigm, a general inductive process automatically builds a text classifier by learning, generally known as supervised learning. However, the supervised learning approaches have some problems. The most notable problem is that they require a large number of labeled training documents for accurate learning. While unlabeled documents are easily collected and plentiful, labeled documents are difficultly generated because a labeling task must be done by human developers. In this paper, we propose a new text classification method based on unsupervised or semi-supervised learning. The proposed method launches text classification tasks with only unlabeled documents and the title word of each category for learning, and then it automatically learns text classifier by using bootstrapping and feature projection techniques. The results of experiments showed that the proposed method achieved reasonably useful performance compared to a supervised method. If the proposed method is used in a text classification task, building text classification systems will become significantly faster and less expensive.
  18. Puzicha, J.: Informationen finden! : Intelligente Suchmaschinentechnologie & automatische Kategorisierung (2007) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 2817) [ClassicSimilarity], result of:
              0.03267146 = score(doc=2817,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 2817, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2817)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Wie in diesem Text erläutert wurde, ist die Effektivität von Such- und Klassifizierungssystemen durch folgendes bestimmt: 1) den Arbeitsauftrag, 2) die Genauigkeit des Systems, 3) den zu erreichenden Automatisierungsgrad, 4) die Einfachheit der Integration in bereits vorhandene Systeme. Diese Kriterien gehen davon aus, dass jedes System, unabhängig von der Technologie, in der Lage ist, Grundvoraussetzungen des Produkts in Bezug auf Funktionalität, Skalierbarkeit und Input-Methode zu erfüllen. Diese Produkteigenschaften sind in der Recommind Produktliteratur genauer erläutert. Von diesen Fähigkeiten ausgehend sollte die vorhergehende Diskussion jedoch einige klare Trends aufgezeigt haben. Es ist nicht überraschend, dass jüngere Entwicklungen im Maschine Learning und anderen Bereichen der Informatik einen theoretischen Ausgangspunkt für die Entwicklung von Suchmaschinen- und Klassifizierungstechnologie haben. Besonders jüngste Fortschritte bei den statistischen Methoden (PLSA) und anderen mathematischen Werkzeugen (SVMs) haben eine Ergebnisqualität auf Durchbruchsniveau erreicht. Dazu kommt noch die Flexibilität in der Anwendung durch Selbsttraining und Kategorienerkennen von PLSA-Systemen, wie auch eine neue Generation von vorher unerreichten Produktivitätsverbesserungen.
  19. Li, T.; Zhu, S.; Ogihara, M.: Hierarchical document classification using automatically generated hierarchy (2007) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 4797) [ClassicSimilarity], result of:
              0.03267146 = score(doc=4797,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 4797, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4797)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Journal of intelligent information systems. 29(2007) no.2, S.211-230
  20. Khoo, C.S.G.; Ng, K.; Ou, S.: ¬An exploratory study of human clustering of Web pages (2003) 0.01
    0.0070702205 = product of:
      0.014140441 = sum of:
        0.014140441 = product of:
          0.028280882 = sum of:
            0.028280882 = weight(_text_:22 in 2741) [ClassicSimilarity], result of:
              0.028280882 = score(doc=2741,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.15476047 = fieldWeight in 2741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2741)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    12. 9.2004 9:56:22